Loading…

Sparse mmWave OFDM Channel Estimation using Compressed Sensing

This paper proposes and analyzes a mmWave sparse channel estimation technique for OFDM systems that uses the Orthogonal Matching Pursuit (OMP) algorithm. This greedy algorithm retrieves one additional multipath component (MPC) per iteration until a stop condition is met. We obtain an analytical appr...

Full description

Saved in:
Bibliographic Details
Main Authors: Gomez-Cuba, Felipe, Goldsmith, Andrea J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Gomez-Cuba, Felipe
Goldsmith, Andrea J.
description This paper proposes and analyzes a mmWave sparse channel estimation technique for OFDM systems that uses the Orthogonal Matching Pursuit (OMP) algorithm. This greedy algorithm retrieves one additional multipath component (MPC) per iteration until a stop condition is met. We obtain an analytical approximation for the OMP estimation error variance that grows with the number of retrieved MPCs (iterations). The OMP channel estimator error variance outperforms a classic maximum-likelihood (ML) non-sparse channel estimator by a factor of approximately 2Ľ/M where Ľ is the number of retrieved MPCs (iterations) and M the number of taps of the Discrete Equivalent Channel. When the MPC amplitude distribution is heavy-tailed, the channel power is concentrated in a subset of dominant MPCs. In this case OMP performs fewer iterations as it retrieves only these dominant large MPCs. Hence for this MPC amplitude distribution the estimation error advantage of OMP over ML is improved. In particular, for channels with MPCs that have lognormally-distributed amplitudes, the OMP estimator recovers approximately 5–15 dominant MPCs in typical mmWave channels, with 15–45 weak MPCs that remain undetected.
doi_str_mv 10.1109/ICC.2019.8761440
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8761440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8761440</ieee_id><sourcerecordid>8761440</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-985964918ddba66734a87e10a8b2e396a398473240bc3cc217b70f56b29495073</originalsourceid><addsrcrecordid>eNotj81Kw0AURkdBsNbuBTfzAolzM3_3bgQZWy1UuqjiskySW400achEwbdXsasPzuJwPiGuQOUAim6WIeSFAsrROzBGnYgZeQSr0aFCpFMxAdKYAaI-FxcpfShlC9IwEbebPg6JZdu-xi-W68X9kwzvset4L-dpbNo4NodOfqame5Ph0PYDp8S13HD3hy7F2S7uE8-OOxUvi_lzeMxW64dluFtlDXg7ZoSWnCHAui6jc16biJ5BRSwL1uSiJjReF0aVla6qAnzp1c66siBDVnk9Fdf_3oaZt_3w2zV8b4939Q9BN0bB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sparse mmWave OFDM Channel Estimation using Compressed Sensing</title><source>IEEE Xplore All Conference Series</source><creator>Gomez-Cuba, Felipe ; Goldsmith, Andrea J.</creator><creatorcontrib>Gomez-Cuba, Felipe ; Goldsmith, Andrea J.</creatorcontrib><description>This paper proposes and analyzes a mmWave sparse channel estimation technique for OFDM systems that uses the Orthogonal Matching Pursuit (OMP) algorithm. This greedy algorithm retrieves one additional multipath component (MPC) per iteration until a stop condition is met. We obtain an analytical approximation for the OMP estimation error variance that grows with the number of retrieved MPCs (iterations). The OMP channel estimator error variance outperforms a classic maximum-likelihood (ML) non-sparse channel estimator by a factor of approximately 2&amp;#x013D;&amp;#x002F;M where &amp;#x013D; is the number of retrieved MPCs (iterations) and M the number of taps of the Discrete Equivalent Channel. When the MPC amplitude distribution is heavy-tailed, the channel power is concentrated in a subset of dominant MPCs. In this case OMP performs fewer iterations as it retrieves only these dominant large MPCs. Hence for this MPC amplitude distribution the estimation error advantage of OMP over ML is improved. In particular, for channels with MPCs that have lognormally-distributed amplitudes, the OMP estimator recovers approximately 5&amp;#x2013;15 dominant MPCs in typical mmWave channels, with 15&amp;#x2013;45 weak MPCs that remain undetected.</description><identifier>EISSN: 1938-1883</identifier><identifier>EISBN: 9781538680889</identifier><identifier>EISBN: 1538680882</identifier><identifier>DOI: 10.1109/ICC.2019.8761440</identifier><language>eng</language><publisher>IEEE</publisher><subject>Estimation ; Face ; Feature extraction ; Forehead ; Predictive models ; Skin ; Training</subject><ispartof>ICC 2019 - 2019 IEEE International Conference on Communications (ICC), 2019, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8761440$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8761440$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gomez-Cuba, Felipe</creatorcontrib><creatorcontrib>Goldsmith, Andrea J.</creatorcontrib><title>Sparse mmWave OFDM Channel Estimation using Compressed Sensing</title><title>ICC 2019 - 2019 IEEE International Conference on Communications (ICC)</title><addtitle>ICC</addtitle><description>This paper proposes and analyzes a mmWave sparse channel estimation technique for OFDM systems that uses the Orthogonal Matching Pursuit (OMP) algorithm. This greedy algorithm retrieves one additional multipath component (MPC) per iteration until a stop condition is met. We obtain an analytical approximation for the OMP estimation error variance that grows with the number of retrieved MPCs (iterations). The OMP channel estimator error variance outperforms a classic maximum-likelihood (ML) non-sparse channel estimator by a factor of approximately 2&amp;#x013D;&amp;#x002F;M where &amp;#x013D; is the number of retrieved MPCs (iterations) and M the number of taps of the Discrete Equivalent Channel. When the MPC amplitude distribution is heavy-tailed, the channel power is concentrated in a subset of dominant MPCs. In this case OMP performs fewer iterations as it retrieves only these dominant large MPCs. Hence for this MPC amplitude distribution the estimation error advantage of OMP over ML is improved. In particular, for channels with MPCs that have lognormally-distributed amplitudes, the OMP estimator recovers approximately 5&amp;#x2013;15 dominant MPCs in typical mmWave channels, with 15&amp;#x2013;45 weak MPCs that remain undetected.</description><subject>Estimation</subject><subject>Face</subject><subject>Feature extraction</subject><subject>Forehead</subject><subject>Predictive models</subject><subject>Skin</subject><subject>Training</subject><issn>1938-1883</issn><isbn>9781538680889</isbn><isbn>1538680882</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AURkdBsNbuBTfzAolzM3_3bgQZWy1UuqjiskySW400achEwbdXsasPzuJwPiGuQOUAim6WIeSFAsrROzBGnYgZeQSr0aFCpFMxAdKYAaI-FxcpfShlC9IwEbebPg6JZdu-xi-W68X9kwzvset4L-dpbNo4NodOfqame5Ph0PYDp8S13HD3hy7F2S7uE8-OOxUvi_lzeMxW64dluFtlDXg7ZoSWnCHAui6jc16biJ5BRSwL1uSiJjReF0aVla6qAnzp1c66siBDVnk9Fdf_3oaZt_3w2zV8b4939Q9BN0bB</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Gomez-Cuba, Felipe</creator><creator>Goldsmith, Andrea J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201905</creationdate><title>Sparse mmWave OFDM Channel Estimation using Compressed Sensing</title><author>Gomez-Cuba, Felipe ; Goldsmith, Andrea J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-985964918ddba66734a87e10a8b2e396a398473240bc3cc217b70f56b29495073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Estimation</topic><topic>Face</topic><topic>Feature extraction</topic><topic>Forehead</topic><topic>Predictive models</topic><topic>Skin</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Cuba, Felipe</creatorcontrib><creatorcontrib>Goldsmith, Andrea J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gomez-Cuba, Felipe</au><au>Goldsmith, Andrea J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sparse mmWave OFDM Channel Estimation using Compressed Sensing</atitle><btitle>ICC 2019 - 2019 IEEE International Conference on Communications (ICC)</btitle><stitle>ICC</stitle><date>2019-05</date><risdate>2019</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>1938-1883</eissn><eisbn>9781538680889</eisbn><eisbn>1538680882</eisbn><abstract>This paper proposes and analyzes a mmWave sparse channel estimation technique for OFDM systems that uses the Orthogonal Matching Pursuit (OMP) algorithm. This greedy algorithm retrieves one additional multipath component (MPC) per iteration until a stop condition is met. We obtain an analytical approximation for the OMP estimation error variance that grows with the number of retrieved MPCs (iterations). The OMP channel estimator error variance outperforms a classic maximum-likelihood (ML) non-sparse channel estimator by a factor of approximately 2&amp;#x013D;&amp;#x002F;M where &amp;#x013D; is the number of retrieved MPCs (iterations) and M the number of taps of the Discrete Equivalent Channel. When the MPC amplitude distribution is heavy-tailed, the channel power is concentrated in a subset of dominant MPCs. In this case OMP performs fewer iterations as it retrieves only these dominant large MPCs. Hence for this MPC amplitude distribution the estimation error advantage of OMP over ML is improved. In particular, for channels with MPCs that have lognormally-distributed amplitudes, the OMP estimator recovers approximately 5&amp;#x2013;15 dominant MPCs in typical mmWave channels, with 15&amp;#x2013;45 weak MPCs that remain undetected.</abstract><pub>IEEE</pub><doi>10.1109/ICC.2019.8761440</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1938-1883
ispartof ICC 2019 - 2019 IEEE International Conference on Communications (ICC), 2019, p.1-7
issn 1938-1883
language eng
recordid cdi_ieee_primary_8761440
source IEEE Xplore All Conference Series
subjects Estimation
Face
Feature extraction
Forehead
Predictive models
Skin
Training
title Sparse mmWave OFDM Channel Estimation using Compressed Sensing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sparse%20mmWave%20OFDM%20Channel%20Estimation%20using%20Compressed%20Sensing&rft.btitle=ICC%202019%20-%202019%20IEEE%20International%20Conference%20on%20Communications%20(ICC)&rft.au=Gomez-Cuba,%20Felipe&rft.date=2019-05&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=1938-1883&rft_id=info:doi/10.1109/ICC.2019.8761440&rft.eisbn=9781538680889&rft.eisbn_list=1538680882&rft_dat=%3Cieee_CHZPO%3E8761440%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-985964918ddba66734a87e10a8b2e396a398473240bc3cc217b70f56b29495073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8761440&rfr_iscdi=true