Loading…
Sparse mmWave OFDM Channel Estimation using Compressed Sensing
This paper proposes and analyzes a mmWave sparse channel estimation technique for OFDM systems that uses the Orthogonal Matching Pursuit (OMP) algorithm. This greedy algorithm retrieves one additional multipath component (MPC) per iteration until a stop condition is met. We obtain an analytical appr...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Gomez-Cuba, Felipe Goldsmith, Andrea J. |
description | This paper proposes and analyzes a mmWave sparse channel estimation technique for OFDM systems that uses the Orthogonal Matching Pursuit (OMP) algorithm. This greedy algorithm retrieves one additional multipath component (MPC) per iteration until a stop condition is met. We obtain an analytical approximation for the OMP estimation error variance that grows with the number of retrieved MPCs (iterations). The OMP channel estimator error variance outperforms a classic maximum-likelihood (ML) non-sparse channel estimator by a factor of approximately 2Ľ/M where Ľ is the number of retrieved MPCs (iterations) and M the number of taps of the Discrete Equivalent Channel. When the MPC amplitude distribution is heavy-tailed, the channel power is concentrated in a subset of dominant MPCs. In this case OMP performs fewer iterations as it retrieves only these dominant large MPCs. Hence for this MPC amplitude distribution the estimation error advantage of OMP over ML is improved. In particular, for channels with MPCs that have lognormally-distributed amplitudes, the OMP estimator recovers approximately 5–15 dominant MPCs in typical mmWave channels, with 15–45 weak MPCs that remain undetected. |
doi_str_mv | 10.1109/ICC.2019.8761440 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8761440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8761440</ieee_id><sourcerecordid>8761440</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-985964918ddba66734a87e10a8b2e396a398473240bc3cc217b70f56b29495073</originalsourceid><addsrcrecordid>eNotj81Kw0AURkdBsNbuBTfzAolzM3_3bgQZWy1UuqjiskySW400achEwbdXsasPzuJwPiGuQOUAim6WIeSFAsrROzBGnYgZeQSr0aFCpFMxAdKYAaI-FxcpfShlC9IwEbebPg6JZdu-xi-W68X9kwzvset4L-dpbNo4NodOfqame5Ph0PYDp8S13HD3hy7F2S7uE8-OOxUvi_lzeMxW64dluFtlDXg7ZoSWnCHAui6jc16biJ5BRSwL1uSiJjReF0aVla6qAnzp1c66siBDVnk9Fdf_3oaZt_3w2zV8b4939Q9BN0bB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sparse mmWave OFDM Channel Estimation using Compressed Sensing</title><source>IEEE Xplore All Conference Series</source><creator>Gomez-Cuba, Felipe ; Goldsmith, Andrea J.</creator><creatorcontrib>Gomez-Cuba, Felipe ; Goldsmith, Andrea J.</creatorcontrib><description>This paper proposes and analyzes a mmWave sparse channel estimation technique for OFDM systems that uses the Orthogonal Matching Pursuit (OMP) algorithm. This greedy algorithm retrieves one additional multipath component (MPC) per iteration until a stop condition is met. We obtain an analytical approximation for the OMP estimation error variance that grows with the number of retrieved MPCs (iterations). The OMP channel estimator error variance outperforms a classic maximum-likelihood (ML) non-sparse channel estimator by a factor of approximately 2&#x013D;&#x002F;M where &#x013D; is the number of retrieved MPCs (iterations) and M the number of taps of the Discrete Equivalent Channel. When the MPC amplitude distribution is heavy-tailed, the channel power is concentrated in a subset of dominant MPCs. In this case OMP performs fewer iterations as it retrieves only these dominant large MPCs. Hence for this MPC amplitude distribution the estimation error advantage of OMP over ML is improved. In particular, for channels with MPCs that have lognormally-distributed amplitudes, the OMP estimator recovers approximately 5&#x2013;15 dominant MPCs in typical mmWave channels, with 15&#x2013;45 weak MPCs that remain undetected.</description><identifier>EISSN: 1938-1883</identifier><identifier>EISBN: 9781538680889</identifier><identifier>EISBN: 1538680882</identifier><identifier>DOI: 10.1109/ICC.2019.8761440</identifier><language>eng</language><publisher>IEEE</publisher><subject>Estimation ; Face ; Feature extraction ; Forehead ; Predictive models ; Skin ; Training</subject><ispartof>ICC 2019 - 2019 IEEE International Conference on Communications (ICC), 2019, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8761440$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8761440$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gomez-Cuba, Felipe</creatorcontrib><creatorcontrib>Goldsmith, Andrea J.</creatorcontrib><title>Sparse mmWave OFDM Channel Estimation using Compressed Sensing</title><title>ICC 2019 - 2019 IEEE International Conference on Communications (ICC)</title><addtitle>ICC</addtitle><description>This paper proposes and analyzes a mmWave sparse channel estimation technique for OFDM systems that uses the Orthogonal Matching Pursuit (OMP) algorithm. This greedy algorithm retrieves one additional multipath component (MPC) per iteration until a stop condition is met. We obtain an analytical approximation for the OMP estimation error variance that grows with the number of retrieved MPCs (iterations). The OMP channel estimator error variance outperforms a classic maximum-likelihood (ML) non-sparse channel estimator by a factor of approximately 2&#x013D;&#x002F;M where &#x013D; is the number of retrieved MPCs (iterations) and M the number of taps of the Discrete Equivalent Channel. When the MPC amplitude distribution is heavy-tailed, the channel power is concentrated in a subset of dominant MPCs. In this case OMP performs fewer iterations as it retrieves only these dominant large MPCs. Hence for this MPC amplitude distribution the estimation error advantage of OMP over ML is improved. In particular, for channels with MPCs that have lognormally-distributed amplitudes, the OMP estimator recovers approximately 5&#x2013;15 dominant MPCs in typical mmWave channels, with 15&#x2013;45 weak MPCs that remain undetected.</description><subject>Estimation</subject><subject>Face</subject><subject>Feature extraction</subject><subject>Forehead</subject><subject>Predictive models</subject><subject>Skin</subject><subject>Training</subject><issn>1938-1883</issn><isbn>9781538680889</isbn><isbn>1538680882</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AURkdBsNbuBTfzAolzM3_3bgQZWy1UuqjiskySW400achEwbdXsasPzuJwPiGuQOUAim6WIeSFAsrROzBGnYgZeQSr0aFCpFMxAdKYAaI-FxcpfShlC9IwEbebPg6JZdu-xi-W68X9kwzvset4L-dpbNo4NodOfqame5Ph0PYDp8S13HD3hy7F2S7uE8-OOxUvi_lzeMxW64dluFtlDXg7ZoSWnCHAui6jc16biJ5BRSwL1uSiJjReF0aVla6qAnzp1c66siBDVnk9Fdf_3oaZt_3w2zV8b4939Q9BN0bB</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Gomez-Cuba, Felipe</creator><creator>Goldsmith, Andrea J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201905</creationdate><title>Sparse mmWave OFDM Channel Estimation using Compressed Sensing</title><author>Gomez-Cuba, Felipe ; Goldsmith, Andrea J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-985964918ddba66734a87e10a8b2e396a398473240bc3cc217b70f56b29495073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Estimation</topic><topic>Face</topic><topic>Feature extraction</topic><topic>Forehead</topic><topic>Predictive models</topic><topic>Skin</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Cuba, Felipe</creatorcontrib><creatorcontrib>Goldsmith, Andrea J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gomez-Cuba, Felipe</au><au>Goldsmith, Andrea J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sparse mmWave OFDM Channel Estimation using Compressed Sensing</atitle><btitle>ICC 2019 - 2019 IEEE International Conference on Communications (ICC)</btitle><stitle>ICC</stitle><date>2019-05</date><risdate>2019</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>1938-1883</eissn><eisbn>9781538680889</eisbn><eisbn>1538680882</eisbn><abstract>This paper proposes and analyzes a mmWave sparse channel estimation technique for OFDM systems that uses the Orthogonal Matching Pursuit (OMP) algorithm. This greedy algorithm retrieves one additional multipath component (MPC) per iteration until a stop condition is met. We obtain an analytical approximation for the OMP estimation error variance that grows with the number of retrieved MPCs (iterations). The OMP channel estimator error variance outperforms a classic maximum-likelihood (ML) non-sparse channel estimator by a factor of approximately 2&#x013D;&#x002F;M where &#x013D; is the number of retrieved MPCs (iterations) and M the number of taps of the Discrete Equivalent Channel. When the MPC amplitude distribution is heavy-tailed, the channel power is concentrated in a subset of dominant MPCs. In this case OMP performs fewer iterations as it retrieves only these dominant large MPCs. Hence for this MPC amplitude distribution the estimation error advantage of OMP over ML is improved. In particular, for channels with MPCs that have lognormally-distributed amplitudes, the OMP estimator recovers approximately 5&#x2013;15 dominant MPCs in typical mmWave channels, with 15&#x2013;45 weak MPCs that remain undetected.</abstract><pub>IEEE</pub><doi>10.1109/ICC.2019.8761440</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1938-1883 |
ispartof | ICC 2019 - 2019 IEEE International Conference on Communications (ICC), 2019, p.1-7 |
issn | 1938-1883 |
language | eng |
recordid | cdi_ieee_primary_8761440 |
source | IEEE Xplore All Conference Series |
subjects | Estimation Face Feature extraction Forehead Predictive models Skin Training |
title | Sparse mmWave OFDM Channel Estimation using Compressed Sensing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sparse%20mmWave%20OFDM%20Channel%20Estimation%20using%20Compressed%20Sensing&rft.btitle=ICC%202019%20-%202019%20IEEE%20International%20Conference%20on%20Communications%20(ICC)&rft.au=Gomez-Cuba,%20Felipe&rft.date=2019-05&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=1938-1883&rft_id=info:doi/10.1109/ICC.2019.8761440&rft.eisbn=9781538680889&rft.eisbn_list=1538680882&rft_dat=%3Cieee_CHZPO%3E8761440%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-985964918ddba66734a87e10a8b2e396a398473240bc3cc217b70f56b29495073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8761440&rfr_iscdi=true |