Loading…
Learn to Adapt to Human Walking: A Model-Based Reinforcement Learning Approach for a Robotic Assistant Rollator
In this letter, we tackle the problem of adapting the motion of a robotic assistant rollator to patients with different mobility status. The goal is to achieve a coupled human-robot motion in a front-following setting as if the patient was pushing the rollator himself/herself. To this end, we propos...
Saved in:
Published in: | IEEE robotics and automation letters 2019-10, Vol.4 (4), p.3774-3781 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c221t-1e5cd86164514dc20d84155babbe13f70561baddf6d94272bc1842de6766628b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c221t-1e5cd86164514dc20d84155babbe13f70561baddf6d94272bc1842de6766628b3 |
container_end_page | 3781 |
container_issue | 4 |
container_start_page | 3774 |
container_title | IEEE robotics and automation letters |
container_volume | 4 |
creator | Chalvatzaki, Georgia Papageorgiou, Xanthi S. Maragos, Petros Tzafestas, Costas S. |
description | In this letter, we tackle the problem of adapting the motion of a robotic assistant rollator to patients with different mobility status. The goal is to achieve a coupled human-robot motion in a front-following setting as if the patient was pushing the rollator himself/herself. To this end, we propose a novel approach using model-based reinforcement learning (MBRL) for adapting the control policy of the robotic assistant. This approach encapsulates our previous work on human tracking and gait analysis from RGB-D and laser streams into a human-in-the-loop decision making strategy. We use long short-term memory (LSTM) networks for designing a human motion intention model and a coupling parameters forecast model, leveraging on the outcome of human gait analysis. An initial LSTM-based policy network was trained via imitation learning from human demonstrations in a motion capture setup. This policy is then fine-tuned with the MBRL framework using tracking data from real patients. A thorough evaluation analysis proves the efficiency of the MBRL approach as a user-adaptive controller. |
doi_str_mv | 10.1109/LRA.2019.2929996 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8767993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8767993</ieee_id><sourcerecordid>2296106200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-1e5cd86164514dc20d84155babbe13f70561baddf6d94272bc1842de6766628b3</originalsourceid><addsrcrecordid>eNpNkEtLxDAUhYMoOIyzF9wEXHfMo00ad3XwBRWhKC5DmqTasdPUJLPw35txBnF1D9zv3McB4ByjJcZIXNVNtSQIiyURRAjBjsCMUM4zyhk7_qdPwSKENUIIF4RTUcyAq63yI4wOVkZNcSceths1wjc1fPbj-zWs4JMzdshuVLAGNrYfO-e13dgxwl9zomA1Td4p_QFTDyrYuNbFXsMqhD5ElcjGDYOKzp-Bk04NwS4OdQ5e725fVg9Z_Xz_uKrqTBOCY4ZtoU3JMMsLnBtNkClzXBStaluLacdRwXCrjOmYETnhpNW4zImxLD3JSNnSObjcz013fW1tiHLttn5MKyUhgmHECEKJQntKexeCt52cfL9R_ltiJHfJypSs3CUrD8kmy8Xe0ltr__CSMy4EpT97bXOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296106200</pqid></control><display><type>article</type><title>Learn to Adapt to Human Walking: A Model-Based Reinforcement Learning Approach for a Robotic Assistant Rollator</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chalvatzaki, Georgia ; Papageorgiou, Xanthi S. ; Maragos, Petros ; Tzafestas, Costas S.</creator><creatorcontrib>Chalvatzaki, Georgia ; Papageorgiou, Xanthi S. ; Maragos, Petros ; Tzafestas, Costas S.</creatorcontrib><description>In this letter, we tackle the problem of adapting the motion of a robotic assistant rollator to patients with different mobility status. The goal is to achieve a coupled human-robot motion in a front-following setting as if the patient was pushing the rollator himself/herself. To this end, we propose a novel approach using model-based reinforcement learning (MBRL) for adapting the control policy of the robotic assistant. This approach encapsulates our previous work on human tracking and gait analysis from RGB-D and laser streams into a human-in-the-loop decision making strategy. We use long short-term memory (LSTM) networks for designing a human motion intention model and a coupling parameters forecast model, leveraging on the outcome of human gait analysis. An initial LSTM-based policy network was trained via imitation learning from human demonstrations in a motion capture setup. This policy is then fine-tuned with the MBRL framework using tracking data from real patients. A thorough evaluation analysis proves the efficiency of the MBRL approach as a user-adaptive controller.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2019.2929996</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; automation in life sciences: biotechnology ; Decision analysis ; Decision making ; Gait ; Human motion ; Human-centered robotics ; learning and adaptive systems ; Legged locomotion ; Machine learning ; Motion capture ; Navigation ; pharmaceutical and health care ; Predictive models ; Robot dynamics ; Robot kinematics ; Robot sensing systems ; Robotics ; Tracking ; Walking</subject><ispartof>IEEE robotics and automation letters, 2019-10, Vol.4 (4), p.3774-3781</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-1e5cd86164514dc20d84155babbe13f70561baddf6d94272bc1842de6766628b3</citedby><cites>FETCH-LOGICAL-c221t-1e5cd86164514dc20d84155babbe13f70561baddf6d94272bc1842de6766628b3</cites><orcidid>0000-0002-5055-199X ; 0000-0003-2579-8648 ; 0000-0003-1545-9191 ; 0000-0003-0534-2707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8767993$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Chalvatzaki, Georgia</creatorcontrib><creatorcontrib>Papageorgiou, Xanthi S.</creatorcontrib><creatorcontrib>Maragos, Petros</creatorcontrib><creatorcontrib>Tzafestas, Costas S.</creatorcontrib><title>Learn to Adapt to Human Walking: A Model-Based Reinforcement Learning Approach for a Robotic Assistant Rollator</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>In this letter, we tackle the problem of adapting the motion of a robotic assistant rollator to patients with different mobility status. The goal is to achieve a coupled human-robot motion in a front-following setting as if the patient was pushing the rollator himself/herself. To this end, we propose a novel approach using model-based reinforcement learning (MBRL) for adapting the control policy of the robotic assistant. This approach encapsulates our previous work on human tracking and gait analysis from RGB-D and laser streams into a human-in-the-loop decision making strategy. We use long short-term memory (LSTM) networks for designing a human motion intention model and a coupling parameters forecast model, leveraging on the outcome of human gait analysis. An initial LSTM-based policy network was trained via imitation learning from human demonstrations in a motion capture setup. This policy is then fine-tuned with the MBRL framework using tracking data from real patients. A thorough evaluation analysis proves the efficiency of the MBRL approach as a user-adaptive controller.</description><subject>Adaptation models</subject><subject>automation in life sciences: biotechnology</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Gait</subject><subject>Human motion</subject><subject>Human-centered robotics</subject><subject>learning and adaptive systems</subject><subject>Legged locomotion</subject><subject>Machine learning</subject><subject>Motion capture</subject><subject>Navigation</subject><subject>pharmaceutical and health care</subject><subject>Predictive models</subject><subject>Robot dynamics</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Tracking</subject><subject>Walking</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLxDAUhYMoOIyzF9wEXHfMo00ad3XwBRWhKC5DmqTasdPUJLPw35txBnF1D9zv3McB4ByjJcZIXNVNtSQIiyURRAjBjsCMUM4zyhk7_qdPwSKENUIIF4RTUcyAq63yI4wOVkZNcSceths1wjc1fPbj-zWs4JMzdshuVLAGNrYfO-e13dgxwl9zomA1Td4p_QFTDyrYuNbFXsMqhD5ElcjGDYOKzp-Bk04NwS4OdQ5e725fVg9Z_Xz_uKrqTBOCY4ZtoU3JMMsLnBtNkClzXBStaluLacdRwXCrjOmYETnhpNW4zImxLD3JSNnSObjcz013fW1tiHLttn5MKyUhgmHECEKJQntKexeCt52cfL9R_ltiJHfJypSs3CUrD8kmy8Xe0ltr__CSMy4EpT97bXOY</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Chalvatzaki, Georgia</creator><creator>Papageorgiou, Xanthi S.</creator><creator>Maragos, Petros</creator><creator>Tzafestas, Costas S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5055-199X</orcidid><orcidid>https://orcid.org/0000-0003-2579-8648</orcidid><orcidid>https://orcid.org/0000-0003-1545-9191</orcidid><orcidid>https://orcid.org/0000-0003-0534-2707</orcidid></search><sort><creationdate>20191001</creationdate><title>Learn to Adapt to Human Walking: A Model-Based Reinforcement Learning Approach for a Robotic Assistant Rollator</title><author>Chalvatzaki, Georgia ; Papageorgiou, Xanthi S. ; Maragos, Petros ; Tzafestas, Costas S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-1e5cd86164514dc20d84155babbe13f70561baddf6d94272bc1842de6766628b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>automation in life sciences: biotechnology</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Gait</topic><topic>Human motion</topic><topic>Human-centered robotics</topic><topic>learning and adaptive systems</topic><topic>Legged locomotion</topic><topic>Machine learning</topic><topic>Motion capture</topic><topic>Navigation</topic><topic>pharmaceutical and health care</topic><topic>Predictive models</topic><topic>Robot dynamics</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Tracking</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chalvatzaki, Georgia</creatorcontrib><creatorcontrib>Papageorgiou, Xanthi S.</creatorcontrib><creatorcontrib>Maragos, Petros</creatorcontrib><creatorcontrib>Tzafestas, Costas S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chalvatzaki, Georgia</au><au>Papageorgiou, Xanthi S.</au><au>Maragos, Petros</au><au>Tzafestas, Costas S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learn to Adapt to Human Walking: A Model-Based Reinforcement Learning Approach for a Robotic Assistant Rollator</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>4</volume><issue>4</issue><spage>3774</spage><epage>3781</epage><pages>3774-3781</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>In this letter, we tackle the problem of adapting the motion of a robotic assistant rollator to patients with different mobility status. The goal is to achieve a coupled human-robot motion in a front-following setting as if the patient was pushing the rollator himself/herself. To this end, we propose a novel approach using model-based reinforcement learning (MBRL) for adapting the control policy of the robotic assistant. This approach encapsulates our previous work on human tracking and gait analysis from RGB-D and laser streams into a human-in-the-loop decision making strategy. We use long short-term memory (LSTM) networks for designing a human motion intention model and a coupling parameters forecast model, leveraging on the outcome of human gait analysis. An initial LSTM-based policy network was trained via imitation learning from human demonstrations in a motion capture setup. This policy is then fine-tuned with the MBRL framework using tracking data from real patients. A thorough evaluation analysis proves the efficiency of the MBRL approach as a user-adaptive controller.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2019.2929996</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5055-199X</orcidid><orcidid>https://orcid.org/0000-0003-2579-8648</orcidid><orcidid>https://orcid.org/0000-0003-1545-9191</orcidid><orcidid>https://orcid.org/0000-0003-0534-2707</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2019-10, Vol.4 (4), p.3774-3781 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_8767993 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptation models automation in life sciences: biotechnology Decision analysis Decision making Gait Human motion Human-centered robotics learning and adaptive systems Legged locomotion Machine learning Motion capture Navigation pharmaceutical and health care Predictive models Robot dynamics Robot kinematics Robot sensing systems Robotics Tracking Walking |
title | Learn to Adapt to Human Walking: A Model-Based Reinforcement Learning Approach for a Robotic Assistant Rollator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T14%3A35%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learn%20to%20Adapt%20to%20Human%20Walking:%20A%20Model-Based%20Reinforcement%20Learning%20Approach%20for%20a%20Robotic%20Assistant%20Rollator&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Chalvatzaki,%20Georgia&rft.date=2019-10-01&rft.volume=4&rft.issue=4&rft.spage=3774&rft.epage=3781&rft.pages=3774-3781&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2019.2929996&rft_dat=%3Cproquest_ieee_%3E2296106200%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-1e5cd86164514dc20d84155babbe13f70561baddf6d94272bc1842de6766628b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2296106200&rft_id=info:pmid/&rft_ieee_id=8767993&rfr_iscdi=true |