Loading…

Efficient Interface Engineering Enhances Photovoltaic Performance of a Bulk-Heterojunction PCDTBT:PC71BM System

High-performance conventional polymer solar cells based on a poly[N-9''-heptadecanyl-2,7-carbazole-alt- 5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT): [6,6]-phenyl C71-butyric acid methyl ester (PC 71 BM) system are achieved via cathodic interfacial...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of photovoltaics 2019-09, Vol.9 (5), p.1258-1265
Main Authors: Chen, Guiting, Liu, Sha, He, Zhicai, Wu, Hong-Bin, Yang, Wei, Zhang, Bin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1265
container_issue 5
container_start_page 1258
container_title IEEE journal of photovoltaics
container_volume 9
creator Chen, Guiting
Liu, Sha
He, Zhicai
Wu, Hong-Bin
Yang, Wei
Zhang, Bin
description High-performance conventional polymer solar cells based on a poly[N-9''-heptadecanyl-2,7-carbazole-alt- 5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT): [6,6]-phenyl C71-butyric acid methyl ester (PC 71 BM) system are achieved via cathodic interfacial engineering by a bispyridinium salt small molecule (FPyBr). The bispyridinium salt can form a directed dipole at the cathode interface and thus decrease the cathode work function, leading to an improved built-in potential and open-circuit voltage. The good energy level alignment and hole-blocking ability of FPyBr at the cathode may suppress the charge recombination and promote the electron extraction process to improve the device performance. A smooth and uniform FPyBr film can be formed on the active layer, resulting in a good interfacial contact. As a result, a power conversion efficiency of 7.68% can be realized with FPyBr, which is significantly higher than for bare Al, solvent-treated and poly[(9,9-bis(3'-(N,N-dimethylamino)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]-modified devices. To the best of our knowledge, this result is one of the highest photovoltaic performance based on PCDTBT:PC 71 BM system. Therefore, FPyBr is a promising cathode modifier for high-performance polymer solar cells.
doi_str_mv 10.1109/JPHOTOV.2019.2925553
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8770242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8770242</ieee_id><sourcerecordid>2279819042</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-e907d080f11fe89a861233faef93d80ec4ccda7afceac68067741f8484064cb13</originalsourceid><addsrcrecordid>eNo1jU1LAzEYhIMoWLS_QA8Bz1vztUnWm12rrVS64Op1iembNrVN6n4I_feuVOcyA_Mwg9A1JSNKSXb7XEwX5eJ9xAjNRixjaZryEzRgNJUJF4Sf_meu6TkaNs2G9JIklVIMUJw4562H0OJZaKF2xgKehJUPALUPqz6vTbDQ4GId2_gdt63xFhc9Gevdb4OjwwaPu-1nMoV-IW66YFsfAy7yh3Jc3hW5ouMX_HpoWthdojNntg0M__wCvT1OynyazBdPs_x-nnhGeJtARtSSaOIodaAzoyVlnDsDLuNLTcAKa5dGGWfBWKmJVEpQp4UWRAr7QfkFujnu7uv41UHTVpvY1aG_rBhTmaYZEaynro6UB4BqX_udqQ-VVoqwvv0BRz9mkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2279819042</pqid></control><display><type>article</type><title>Efficient Interface Engineering Enhances Photovoltaic Performance of a Bulk-Heterojunction PCDTBT:PC71BM System</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chen, Guiting ; Liu, Sha ; He, Zhicai ; Wu, Hong-Bin ; Yang, Wei ; Zhang, Bin</creator><creatorcontrib>Chen, Guiting ; Liu, Sha ; He, Zhicai ; Wu, Hong-Bin ; Yang, Wei ; Zhang, Bin</creatorcontrib><description>High-performance conventional polymer solar cells based on a poly[N-9''-heptadecanyl-2,7-carbazole-alt- 5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT): [6,6]-phenyl C71-butyric acid methyl ester (PC 71 BM) system are achieved via cathodic interfacial engineering by a bispyridinium salt small molecule (FPyBr). The bispyridinium salt can form a directed dipole at the cathode interface and thus decrease the cathode work function, leading to an improved built-in potential and open-circuit voltage. The good energy level alignment and hole-blocking ability of FPyBr at the cathode may suppress the charge recombination and promote the electron extraction process to improve the device performance. A smooth and uniform FPyBr film can be formed on the active layer, resulting in a good interfacial contact. As a result, a power conversion efficiency of 7.68% can be realized with FPyBr, which is significantly higher than for bare Al, solvent-treated and poly[(9,9-bis(3'-(N,N-dimethylamino)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]-modified devices. To the best of our knowledge, this result is one of the highest photovoltaic performance based on PCDTBT:PC 71 BM system. Therefore, FPyBr is a promising cathode modifier for high-performance polymer solar cells.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2019.2925553</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3'-benzothiadiazole)] (PCDTBT ; 5-(4 ; 7'-di-2-thienyl-2' ; 7-carbazole-alt- 5 ; Butyric acid ; Carbazoles ; Cathode interfacial layer ; Cathodes ; Dipoles ; Energy conversion efficiency ; Energy levels ; Energy states ; Heterojunctions ; interface engineering ; Open circuit voltage ; Performance evaluation ; Photovoltaic cells ; Photovoltaic systems ; poly[N-9''-heptadecanyl-2 ; polymer solar cells (PSCs) ; Polymers ; Solar cells ; Work functions</subject><ispartof>IEEE journal of photovoltaics, 2019-09, Vol.9 (5), p.1258-1265</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7176-699X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8770242$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chen, Guiting</creatorcontrib><creatorcontrib>Liu, Sha</creatorcontrib><creatorcontrib>He, Zhicai</creatorcontrib><creatorcontrib>Wu, Hong-Bin</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><title>Efficient Interface Engineering Enhances Photovoltaic Performance of a Bulk-Heterojunction PCDTBT:PC71BM System</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>High-performance conventional polymer solar cells based on a poly[N-9''-heptadecanyl-2,7-carbazole-alt- 5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT): [6,6]-phenyl C71-butyric acid methyl ester (PC 71 BM) system are achieved via cathodic interfacial engineering by a bispyridinium salt small molecule (FPyBr). The bispyridinium salt can form a directed dipole at the cathode interface and thus decrease the cathode work function, leading to an improved built-in potential and open-circuit voltage. The good energy level alignment and hole-blocking ability of FPyBr at the cathode may suppress the charge recombination and promote the electron extraction process to improve the device performance. A smooth and uniform FPyBr film can be formed on the active layer, resulting in a good interfacial contact. As a result, a power conversion efficiency of 7.68% can be realized with FPyBr, which is significantly higher than for bare Al, solvent-treated and poly[(9,9-bis(3'-(N,N-dimethylamino)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]-modified devices. To the best of our knowledge, this result is one of the highest photovoltaic performance based on PCDTBT:PC 71 BM system. Therefore, FPyBr is a promising cathode modifier for high-performance polymer solar cells.</description><subject>3'-benzothiadiazole)] (PCDTBT</subject><subject>5-(4</subject><subject>7'-di-2-thienyl-2'</subject><subject>7-carbazole-alt- 5</subject><subject>Butyric acid</subject><subject>Carbazoles</subject><subject>Cathode interfacial layer</subject><subject>Cathodes</subject><subject>Dipoles</subject><subject>Energy conversion efficiency</subject><subject>Energy levels</subject><subject>Energy states</subject><subject>Heterojunctions</subject><subject>interface engineering</subject><subject>Open circuit voltage</subject><subject>Performance evaluation</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>poly[N-9''-heptadecanyl-2</subject><subject>polymer solar cells (PSCs)</subject><subject>Polymers</subject><subject>Solar cells</subject><subject>Work functions</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo1jU1LAzEYhIMoWLS_QA8Bz1vztUnWm12rrVS64Op1iembNrVN6n4I_feuVOcyA_Mwg9A1JSNKSXb7XEwX5eJ9xAjNRixjaZryEzRgNJUJF4Sf_meu6TkaNs2G9JIklVIMUJw4562H0OJZaKF2xgKehJUPALUPqz6vTbDQ4GId2_gdt63xFhc9Gevdb4OjwwaPu-1nMoV-IW66YFsfAy7yh3Jc3hW5ouMX_HpoWthdojNntg0M__wCvT1OynyazBdPs_x-nnhGeJtARtSSaOIodaAzoyVlnDsDLuNLTcAKa5dGGWfBWKmJVEpQp4UWRAr7QfkFujnu7uv41UHTVpvY1aG_rBhTmaYZEaynro6UB4BqX_udqQ-VVoqwvv0BRz9mkA</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Chen, Guiting</creator><creator>Liu, Sha</creator><creator>He, Zhicai</creator><creator>Wu, Hong-Bin</creator><creator>Yang, Wei</creator><creator>Zhang, Bin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7176-699X</orcidid></search><sort><creationdate>20190901</creationdate><title>Efficient Interface Engineering Enhances Photovoltaic Performance of a Bulk-Heterojunction PCDTBT:PC71BM System</title><author>Chen, Guiting ; Liu, Sha ; He, Zhicai ; Wu, Hong-Bin ; Yang, Wei ; Zhang, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-e907d080f11fe89a861233faef93d80ec4ccda7afceac68067741f8484064cb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3'-benzothiadiazole)] (PCDTBT</topic><topic>5-(4</topic><topic>7'-di-2-thienyl-2'</topic><topic>7-carbazole-alt- 5</topic><topic>Butyric acid</topic><topic>Carbazoles</topic><topic>Cathode interfacial layer</topic><topic>Cathodes</topic><topic>Dipoles</topic><topic>Energy conversion efficiency</topic><topic>Energy levels</topic><topic>Energy states</topic><topic>Heterojunctions</topic><topic>interface engineering</topic><topic>Open circuit voltage</topic><topic>Performance evaluation</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>poly[N-9''-heptadecanyl-2</topic><topic>polymer solar cells (PSCs)</topic><topic>Polymers</topic><topic>Solar cells</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Guiting</creatorcontrib><creatorcontrib>Liu, Sha</creatorcontrib><creatorcontrib>He, Zhicai</creatorcontrib><creatorcontrib>Wu, Hong-Bin</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Guiting</au><au>Liu, Sha</au><au>He, Zhicai</au><au>Wu, Hong-Bin</au><au>Yang, Wei</au><au>Zhang, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Interface Engineering Enhances Photovoltaic Performance of a Bulk-Heterojunction PCDTBT:PC71BM System</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>9</volume><issue>5</issue><spage>1258</spage><epage>1265</epage><pages>1258-1265</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>High-performance conventional polymer solar cells based on a poly[N-9''-heptadecanyl-2,7-carbazole-alt- 5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT): [6,6]-phenyl C71-butyric acid methyl ester (PC 71 BM) system are achieved via cathodic interfacial engineering by a bispyridinium salt small molecule (FPyBr). The bispyridinium salt can form a directed dipole at the cathode interface and thus decrease the cathode work function, leading to an improved built-in potential and open-circuit voltage. The good energy level alignment and hole-blocking ability of FPyBr at the cathode may suppress the charge recombination and promote the electron extraction process to improve the device performance. A smooth and uniform FPyBr film can be formed on the active layer, resulting in a good interfacial contact. As a result, a power conversion efficiency of 7.68% can be realized with FPyBr, which is significantly higher than for bare Al, solvent-treated and poly[(9,9-bis(3'-(N,N-dimethylamino)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]-modified devices. To the best of our knowledge, this result is one of the highest photovoltaic performance based on PCDTBT:PC 71 BM system. Therefore, FPyBr is a promising cathode modifier for high-performance polymer solar cells.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2019.2925553</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7176-699X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2019-09, Vol.9 (5), p.1258-1265
issn 2156-3381
2156-3403
language eng
recordid cdi_ieee_primary_8770242
source IEEE Electronic Library (IEL) Journals
subjects 3'-benzothiadiazole)] (PCDTBT
5-(4
7'-di-2-thienyl-2'
7-carbazole-alt- 5
Butyric acid
Carbazoles
Cathode interfacial layer
Cathodes
Dipoles
Energy conversion efficiency
Energy levels
Energy states
Heterojunctions
interface engineering
Open circuit voltage
Performance evaluation
Photovoltaic cells
Photovoltaic systems
poly[N-9''-heptadecanyl-2
polymer solar cells (PSCs)
Polymers
Solar cells
Work functions
title Efficient Interface Engineering Enhances Photovoltaic Performance of a Bulk-Heterojunction PCDTBT:PC71BM System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Interface%20Engineering%20Enhances%20Photovoltaic%20Performance%20of%20a%20Bulk-Heterojunction%20PCDTBT:PC71BM%20System&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Chen,%20Guiting&rft.date=2019-09-01&rft.volume=9&rft.issue=5&rft.spage=1258&rft.epage=1265&rft.pages=1258-1265&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2019.2925553&rft_dat=%3Cproquest_ieee_%3E2279819042%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-e907d080f11fe89a861233faef93d80ec4ccda7afceac68067741f8484064cb13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2279819042&rft_id=info:pmid/&rft_ieee_id=8770242&rfr_iscdi=true