Loading…
Particle Swarm Loss for Lightweight Object Detection
Currently in object detection, deep learning based detectors are gaining their momentum. However, the supervision involved in the widely-used anchor paradigm within the detection pipeline is inadequate. Traditional object detectors opt for densely picking anchors to increase the training samples for...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 126 |
container_issue | |
container_start_page | 121 |
container_title | |
container_volume | |
creator | Zhang, Peizhen Zheng, Feng Du, Junlong Zhang, Jun Guo, Xiaowei Zheng, Wei-Shi |
description | Currently in object detection, deep learning based detectors are gaining their momentum. However, the supervision involved in the widely-used anchor paradigm within the detection pipeline is inadequate. Traditional object detectors opt for densely picking anchors to increase the training samples for faster convergence and better detection quality. However, dense anchor scheme requires extra computational budget which renders it infeasible for lightweight detectors. To address the problem, inspired by the cognitive consistency, we propose a novel Particle Swarm Loss for lightweight object detection. Experiments upon the MS-COCO challenge show that detectors compensated by PS loss can not only converge faster but also acquire better detection quality than their vanilla versions (YOLOv3 and SSD improves 2.0% and 2.5% on the harsh AP50 respectively) without extra computational overhead. In addition, we propose a dapper backbone with high cost-efficiency for the resource-limited scenarios. |
doi_str_mv | 10.1109/ICME.2019.00029 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8784932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8784932</ieee_id><sourcerecordid>8784932</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f2c472eb6bfcdc64bac218e1705f91f059009f0b71f1587fafc14aea86f59d993</originalsourceid><addsrcrecordid>eNotjEFLwzAYQKMgOGbPHrzkD7R-X5o0-Y5Spw4qE1TwNtLsi2ZsVtLC8N870ct7l8cT4hKhQgS6XraPi0oBUgUAik5EQdahqV1Dxih9KmZI2pTWubdzUYzj9piB1Zqgngn95POUwo7l88HnveyGcZRxyLJL7x_TgX8pV_2WwyRveToqDZ8X4iz63cjFv-fi9W7x0j6U3ep-2d50ZUJrpjKqoK3ivulj2IRG9z4odIwWTCSMYAiAIvQWIxpno48BtWfvmmhoQ1TPxdXfNzHz-iunvc_fa2edplrVPzQcRcA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Particle Swarm Loss for Lightweight Object Detection</title><source>IEEE Xplore All Conference Series</source><creator>Zhang, Peizhen ; Zheng, Feng ; Du, Junlong ; Zhang, Jun ; Guo, Xiaowei ; Zheng, Wei-Shi</creator><creatorcontrib>Zhang, Peizhen ; Zheng, Feng ; Du, Junlong ; Zhang, Jun ; Guo, Xiaowei ; Zheng, Wei-Shi</creatorcontrib><description>Currently in object detection, deep learning based detectors are gaining their momentum. However, the supervision involved in the widely-used anchor paradigm within the detection pipeline is inadequate. Traditional object detectors opt for densely picking anchors to increase the training samples for faster convergence and better detection quality. However, dense anchor scheme requires extra computational budget which renders it infeasible for lightweight detectors. To address the problem, inspired by the cognitive consistency, we propose a novel Particle Swarm Loss for lightweight object detection. Experiments upon the MS-COCO challenge show that detectors compensated by PS loss can not only converge faster but also acquire better detection quality than their vanilla versions (YOLOv3 and SSD improves 2.0% and 2.5% on the harsh AP50 respectively) without extra computational overhead. In addition, we propose a dapper backbone with high cost-efficiency for the resource-limited scenarios.</description><identifier>EISSN: 1945-788X</identifier><identifier>EISBN: 9781538695524</identifier><identifier>EISBN: 1538695529</identifier><identifier>DOI: 10.1109/ICME.2019.00029</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolution ; deep learning ; detection ; Detectors ; lightweight ; Object detection ; Particle swarm optimization ; Task analysis ; Training ; Visualization</subject><ispartof>2019 IEEE International Conference on Multimedia and Expo (ICME), 2019, p.121-126</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8784932$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8784932$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Peizhen</creatorcontrib><creatorcontrib>Zheng, Feng</creatorcontrib><creatorcontrib>Du, Junlong</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Guo, Xiaowei</creatorcontrib><creatorcontrib>Zheng, Wei-Shi</creatorcontrib><title>Particle Swarm Loss for Lightweight Object Detection</title><title>2019 IEEE International Conference on Multimedia and Expo (ICME)</title><addtitle>ICME</addtitle><description>Currently in object detection, deep learning based detectors are gaining their momentum. However, the supervision involved in the widely-used anchor paradigm within the detection pipeline is inadequate. Traditional object detectors opt for densely picking anchors to increase the training samples for faster convergence and better detection quality. However, dense anchor scheme requires extra computational budget which renders it infeasible for lightweight detectors. To address the problem, inspired by the cognitive consistency, we propose a novel Particle Swarm Loss for lightweight object detection. Experiments upon the MS-COCO challenge show that detectors compensated by PS loss can not only converge faster but also acquire better detection quality than their vanilla versions (YOLOv3 and SSD improves 2.0% and 2.5% on the harsh AP50 respectively) without extra computational overhead. In addition, we propose a dapper backbone with high cost-efficiency for the resource-limited scenarios.</description><subject>Convolution</subject><subject>deep learning</subject><subject>detection</subject><subject>Detectors</subject><subject>lightweight</subject><subject>Object detection</subject><subject>Particle swarm optimization</subject><subject>Task analysis</subject><subject>Training</subject><subject>Visualization</subject><issn>1945-788X</issn><isbn>9781538695524</isbn><isbn>1538695529</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjEFLwzAYQKMgOGbPHrzkD7R-X5o0-Y5Spw4qE1TwNtLsi2ZsVtLC8N870ct7l8cT4hKhQgS6XraPi0oBUgUAik5EQdahqV1Dxih9KmZI2pTWubdzUYzj9piB1Zqgngn95POUwo7l88HnveyGcZRxyLJL7x_TgX8pV_2WwyRveToqDZ8X4iz63cjFv-fi9W7x0j6U3ep-2d50ZUJrpjKqoK3ivulj2IRG9z4odIwWTCSMYAiAIvQWIxpno48BtWfvmmhoQ1TPxdXfNzHz-iunvc_fa2edplrVPzQcRcA</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Zhang, Peizhen</creator><creator>Zheng, Feng</creator><creator>Du, Junlong</creator><creator>Zhang, Jun</creator><creator>Guo, Xiaowei</creator><creator>Zheng, Wei-Shi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201907</creationdate><title>Particle Swarm Loss for Lightweight Object Detection</title><author>Zhang, Peizhen ; Zheng, Feng ; Du, Junlong ; Zhang, Jun ; Guo, Xiaowei ; Zheng, Wei-Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f2c472eb6bfcdc64bac218e1705f91f059009f0b71f1587fafc14aea86f59d993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Convolution</topic><topic>deep learning</topic><topic>detection</topic><topic>Detectors</topic><topic>lightweight</topic><topic>Object detection</topic><topic>Particle swarm optimization</topic><topic>Task analysis</topic><topic>Training</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Peizhen</creatorcontrib><creatorcontrib>Zheng, Feng</creatorcontrib><creatorcontrib>Du, Junlong</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Guo, Xiaowei</creatorcontrib><creatorcontrib>Zheng, Wei-Shi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Peizhen</au><au>Zheng, Feng</au><au>Du, Junlong</au><au>Zhang, Jun</au><au>Guo, Xiaowei</au><au>Zheng, Wei-Shi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Particle Swarm Loss for Lightweight Object Detection</atitle><btitle>2019 IEEE International Conference on Multimedia and Expo (ICME)</btitle><stitle>ICME</stitle><date>2019-07</date><risdate>2019</risdate><spage>121</spage><epage>126</epage><pages>121-126</pages><eissn>1945-788X</eissn><eisbn>9781538695524</eisbn><eisbn>1538695529</eisbn><abstract>Currently in object detection, deep learning based detectors are gaining their momentum. However, the supervision involved in the widely-used anchor paradigm within the detection pipeline is inadequate. Traditional object detectors opt for densely picking anchors to increase the training samples for faster convergence and better detection quality. However, dense anchor scheme requires extra computational budget which renders it infeasible for lightweight detectors. To address the problem, inspired by the cognitive consistency, we propose a novel Particle Swarm Loss for lightweight object detection. Experiments upon the MS-COCO challenge show that detectors compensated by PS loss can not only converge faster but also acquire better detection quality than their vanilla versions (YOLOv3 and SSD improves 2.0% and 2.5% on the harsh AP50 respectively) without extra computational overhead. In addition, we propose a dapper backbone with high cost-efficiency for the resource-limited scenarios.</abstract><pub>IEEE</pub><doi>10.1109/ICME.2019.00029</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1945-788X |
ispartof | 2019 IEEE International Conference on Multimedia and Expo (ICME), 2019, p.121-126 |
issn | 1945-788X |
language | eng |
recordid | cdi_ieee_primary_8784932 |
source | IEEE Xplore All Conference Series |
subjects | Convolution deep learning detection Detectors lightweight Object detection Particle swarm optimization Task analysis Training Visualization |
title | Particle Swarm Loss for Lightweight Object Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Particle%20Swarm%20Loss%20for%20Lightweight%20Object%20Detection&rft.btitle=2019%20IEEE%20International%20Conference%20on%20Multimedia%20and%20Expo%20(ICME)&rft.au=Zhang,%20Peizhen&rft.date=2019-07&rft.spage=121&rft.epage=126&rft.pages=121-126&rft.eissn=1945-788X&rft_id=info:doi/10.1109/ICME.2019.00029&rft.eisbn=9781538695524&rft.eisbn_list=1538695529&rft_dat=%3Cieee_CHZPO%3E8784932%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-f2c472eb6bfcdc64bac218e1705f91f059009f0b71f1587fafc14aea86f59d993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8784932&rfr_iscdi=true |