Loading…

Particle Swarm Loss for Lightweight Object Detection

Currently in object detection, deep learning based detectors are gaining their momentum. However, the supervision involved in the widely-used anchor paradigm within the detection pipeline is inadequate. Traditional object detectors opt for densely picking anchors to increase the training samples for...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Peizhen, Zheng, Feng, Du, Junlong, Zhang, Jun, Guo, Xiaowei, Zheng, Wei-Shi
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 126
container_issue
container_start_page 121
container_title
container_volume
creator Zhang, Peizhen
Zheng, Feng
Du, Junlong
Zhang, Jun
Guo, Xiaowei
Zheng, Wei-Shi
description Currently in object detection, deep learning based detectors are gaining their momentum. However, the supervision involved in the widely-used anchor paradigm within the detection pipeline is inadequate. Traditional object detectors opt for densely picking anchors to increase the training samples for faster convergence and better detection quality. However, dense anchor scheme requires extra computational budget which renders it infeasible for lightweight detectors. To address the problem, inspired by the cognitive consistency, we propose a novel Particle Swarm Loss for lightweight object detection. Experiments upon the MS-COCO challenge show that detectors compensated by PS loss can not only converge faster but also acquire better detection quality than their vanilla versions (YOLOv3 and SSD improves 2.0% and 2.5% on the harsh AP50 respectively) without extra computational overhead. In addition, we propose a dapper backbone with high cost-efficiency for the resource-limited scenarios.
doi_str_mv 10.1109/ICME.2019.00029
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8784932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8784932</ieee_id><sourcerecordid>8784932</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f2c472eb6bfcdc64bac218e1705f91f059009f0b71f1587fafc14aea86f59d993</originalsourceid><addsrcrecordid>eNotjEFLwzAYQKMgOGbPHrzkD7R-X5o0-Y5Spw4qE1TwNtLsi2ZsVtLC8N870ct7l8cT4hKhQgS6XraPi0oBUgUAik5EQdahqV1Dxih9KmZI2pTWubdzUYzj9piB1Zqgngn95POUwo7l88HnveyGcZRxyLJL7x_TgX8pV_2WwyRveToqDZ8X4iz63cjFv-fi9W7x0j6U3ep-2d50ZUJrpjKqoK3ivulj2IRG9z4odIwWTCSMYAiAIvQWIxpno48BtWfvmmhoQ1TPxdXfNzHz-iunvc_fa2edplrVPzQcRcA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Particle Swarm Loss for Lightweight Object Detection</title><source>IEEE Xplore All Conference Series</source><creator>Zhang, Peizhen ; Zheng, Feng ; Du, Junlong ; Zhang, Jun ; Guo, Xiaowei ; Zheng, Wei-Shi</creator><creatorcontrib>Zhang, Peizhen ; Zheng, Feng ; Du, Junlong ; Zhang, Jun ; Guo, Xiaowei ; Zheng, Wei-Shi</creatorcontrib><description>Currently in object detection, deep learning based detectors are gaining their momentum. However, the supervision involved in the widely-used anchor paradigm within the detection pipeline is inadequate. Traditional object detectors opt for densely picking anchors to increase the training samples for faster convergence and better detection quality. However, dense anchor scheme requires extra computational budget which renders it infeasible for lightweight detectors. To address the problem, inspired by the cognitive consistency, we propose a novel Particle Swarm Loss for lightweight object detection. Experiments upon the MS-COCO challenge show that detectors compensated by PS loss can not only converge faster but also acquire better detection quality than their vanilla versions (YOLOv3 and SSD improves 2.0% and 2.5% on the harsh AP50 respectively) without extra computational overhead. In addition, we propose a dapper backbone with high cost-efficiency for the resource-limited scenarios.</description><identifier>EISSN: 1945-788X</identifier><identifier>EISBN: 9781538695524</identifier><identifier>EISBN: 1538695529</identifier><identifier>DOI: 10.1109/ICME.2019.00029</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolution ; deep learning ; detection ; Detectors ; lightweight ; Object detection ; Particle swarm optimization ; Task analysis ; Training ; Visualization</subject><ispartof>2019 IEEE International Conference on Multimedia and Expo (ICME), 2019, p.121-126</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8784932$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8784932$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Peizhen</creatorcontrib><creatorcontrib>Zheng, Feng</creatorcontrib><creatorcontrib>Du, Junlong</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Guo, Xiaowei</creatorcontrib><creatorcontrib>Zheng, Wei-Shi</creatorcontrib><title>Particle Swarm Loss for Lightweight Object Detection</title><title>2019 IEEE International Conference on Multimedia and Expo (ICME)</title><addtitle>ICME</addtitle><description>Currently in object detection, deep learning based detectors are gaining their momentum. However, the supervision involved in the widely-used anchor paradigm within the detection pipeline is inadequate. Traditional object detectors opt for densely picking anchors to increase the training samples for faster convergence and better detection quality. However, dense anchor scheme requires extra computational budget which renders it infeasible for lightweight detectors. To address the problem, inspired by the cognitive consistency, we propose a novel Particle Swarm Loss for lightweight object detection. Experiments upon the MS-COCO challenge show that detectors compensated by PS loss can not only converge faster but also acquire better detection quality than their vanilla versions (YOLOv3 and SSD improves 2.0% and 2.5% on the harsh AP50 respectively) without extra computational overhead. In addition, we propose a dapper backbone with high cost-efficiency for the resource-limited scenarios.</description><subject>Convolution</subject><subject>deep learning</subject><subject>detection</subject><subject>Detectors</subject><subject>lightweight</subject><subject>Object detection</subject><subject>Particle swarm optimization</subject><subject>Task analysis</subject><subject>Training</subject><subject>Visualization</subject><issn>1945-788X</issn><isbn>9781538695524</isbn><isbn>1538695529</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjEFLwzAYQKMgOGbPHrzkD7R-X5o0-Y5Spw4qE1TwNtLsi2ZsVtLC8N870ct7l8cT4hKhQgS6XraPi0oBUgUAik5EQdahqV1Dxih9KmZI2pTWubdzUYzj9piB1Zqgngn95POUwo7l88HnveyGcZRxyLJL7x_TgX8pV_2WwyRveToqDZ8X4iz63cjFv-fi9W7x0j6U3ep-2d50ZUJrpjKqoK3ivulj2IRG9z4odIwWTCSMYAiAIvQWIxpno48BtWfvmmhoQ1TPxdXfNzHz-iunvc_fa2edplrVPzQcRcA</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Zhang, Peizhen</creator><creator>Zheng, Feng</creator><creator>Du, Junlong</creator><creator>Zhang, Jun</creator><creator>Guo, Xiaowei</creator><creator>Zheng, Wei-Shi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201907</creationdate><title>Particle Swarm Loss for Lightweight Object Detection</title><author>Zhang, Peizhen ; Zheng, Feng ; Du, Junlong ; Zhang, Jun ; Guo, Xiaowei ; Zheng, Wei-Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f2c472eb6bfcdc64bac218e1705f91f059009f0b71f1587fafc14aea86f59d993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Convolution</topic><topic>deep learning</topic><topic>detection</topic><topic>Detectors</topic><topic>lightweight</topic><topic>Object detection</topic><topic>Particle swarm optimization</topic><topic>Task analysis</topic><topic>Training</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Peizhen</creatorcontrib><creatorcontrib>Zheng, Feng</creatorcontrib><creatorcontrib>Du, Junlong</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Guo, Xiaowei</creatorcontrib><creatorcontrib>Zheng, Wei-Shi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Peizhen</au><au>Zheng, Feng</au><au>Du, Junlong</au><au>Zhang, Jun</au><au>Guo, Xiaowei</au><au>Zheng, Wei-Shi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Particle Swarm Loss for Lightweight Object Detection</atitle><btitle>2019 IEEE International Conference on Multimedia and Expo (ICME)</btitle><stitle>ICME</stitle><date>2019-07</date><risdate>2019</risdate><spage>121</spage><epage>126</epage><pages>121-126</pages><eissn>1945-788X</eissn><eisbn>9781538695524</eisbn><eisbn>1538695529</eisbn><abstract>Currently in object detection, deep learning based detectors are gaining their momentum. However, the supervision involved in the widely-used anchor paradigm within the detection pipeline is inadequate. Traditional object detectors opt for densely picking anchors to increase the training samples for faster convergence and better detection quality. However, dense anchor scheme requires extra computational budget which renders it infeasible for lightweight detectors. To address the problem, inspired by the cognitive consistency, we propose a novel Particle Swarm Loss for lightweight object detection. Experiments upon the MS-COCO challenge show that detectors compensated by PS loss can not only converge faster but also acquire better detection quality than their vanilla versions (YOLOv3 and SSD improves 2.0% and 2.5% on the harsh AP50 respectively) without extra computational overhead. In addition, we propose a dapper backbone with high cost-efficiency for the resource-limited scenarios.</abstract><pub>IEEE</pub><doi>10.1109/ICME.2019.00029</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1945-788X
ispartof 2019 IEEE International Conference on Multimedia and Expo (ICME), 2019, p.121-126
issn 1945-788X
language eng
recordid cdi_ieee_primary_8784932
source IEEE Xplore All Conference Series
subjects Convolution
deep learning
detection
Detectors
lightweight
Object detection
Particle swarm optimization
Task analysis
Training
Visualization
title Particle Swarm Loss for Lightweight Object Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Particle%20Swarm%20Loss%20for%20Lightweight%20Object%20Detection&rft.btitle=2019%20IEEE%20International%20Conference%20on%20Multimedia%20and%20Expo%20(ICME)&rft.au=Zhang,%20Peizhen&rft.date=2019-07&rft.spage=121&rft.epage=126&rft.pages=121-126&rft.eissn=1945-788X&rft_id=info:doi/10.1109/ICME.2019.00029&rft.eisbn=9781538695524&rft.eisbn_list=1538695529&rft_dat=%3Cieee_CHZPO%3E8784932%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-f2c472eb6bfcdc64bac218e1705f91f059009f0b71f1587fafc14aea86f59d993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8784932&rfr_iscdi=true