Loading…

Visualizing Structures in Confocal Microscopy Datasets Through Clusterization: A Case Study on Bile Ducts

Three-dimensional datasets from biological tissues have increased with the evolution of confocal microscopy. Hepatology researchers have used confocal microscopy for investigating the microanatomy of bile ducts. Bile ducts are complex tubular tissues consisting of many juxtaposed microstructures wit...

Full description

Saved in:
Bibliographic Details
Main Authors: Beltran, Lizeth A.C., Cruz, Carolina U., dos Santos, Jorge Luiz, Shivakumar, Pranavkumar, Bezerra, Jorge, Freitas, Carla M.D.S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 410
container_issue
container_start_page 405
container_title
container_volume
creator Beltran, Lizeth A.C.
Cruz, Carolina U.
dos Santos, Jorge Luiz
Shivakumar, Pranavkumar
Bezerra, Jorge
Freitas, Carla M.D.S.
description Three-dimensional datasets from biological tissues have increased with the evolution of confocal microscopy. Hepatology researchers have used confocal microscopy for investigating the microanatomy of bile ducts. Bile ducts are complex tubular tissues consisting of many juxtaposed microstructures with distinct characteristics. Since confocal images are difficult to segment because of the noise introduced during the specimen preparation, traditional quantitative analyses used in medical datasets are difficult to perform on confocal microscopy data and require extensive user intervention. Thus, the visual exploration and analysis of bile ducts pose a challenge in hepatology research, requiring different methods. This paper investigates the application of unsupervised machine learning to extract relevant structures from confocal microscopy datasets representing bile ducts. Our approach consists of pre-processing, clustering, and 3D visualization. For clustering, we explore the density-based spatial clustering for applications with noise (DBSCAN) algorithm, using gradient information for guiding the clustering. We obtained a better visualization of the most prominent vessels and internal structures.
doi_str_mv 10.1109/CBMS.2019.00086
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8787482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8787482</ieee_id><sourcerecordid>8787482</sourcerecordid><originalsourceid>FETCH-LOGICAL-i216t-4f323d6d8782ba3cf91c88da23fb9a8e4154f1e02cde5bc78dfa22ec70215f833</originalsourceid><addsrcrecordid>eNotzE9PwjAYgPFqYiIiZw9e-gWGfd9ua-sNBv5JIB5Ar6R0LdTMjbTdAT69S_T0XJ78CHkANgVg6qmarzdTZKCmjDFZXpGJEhIESkCUJVyTEXKBmQIlb8ldjN-MFRyKYkT8l4-9bvzFtwe6SaE3qQ82Ut_SqmtdZ3RD196ELprudKYLnXS0KdLtMXT94Uirpo_JBn_RyXftM53RahgGqa_PtGvp3DeWLgY13pMbp5toJ_8dk8-X5bZ6y1Yfr-_VbJV5hDJluePI67KWQuJec-MUGClrjdztlZY2hyJ3YBma2hZ7I2TtNKI1giEUTnI-Jo9_rrfW7k7B_-hw3g2cyCXyX8tFWM0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Visualizing Structures in Confocal Microscopy Datasets Through Clusterization: A Case Study on Bile Ducts</title><source>IEEE Xplore All Conference Series</source><creator>Beltran, Lizeth A.C. ; Cruz, Carolina U. ; dos Santos, Jorge Luiz ; Shivakumar, Pranavkumar ; Bezerra, Jorge ; Freitas, Carla M.D.S.</creator><creatorcontrib>Beltran, Lizeth A.C. ; Cruz, Carolina U. ; dos Santos, Jorge Luiz ; Shivakumar, Pranavkumar ; Bezerra, Jorge ; Freitas, Carla M.D.S.</creatorcontrib><description>Three-dimensional datasets from biological tissues have increased with the evolution of confocal microscopy. Hepatology researchers have used confocal microscopy for investigating the microanatomy of bile ducts. Bile ducts are complex tubular tissues consisting of many juxtaposed microstructures with distinct characteristics. Since confocal images are difficult to segment because of the noise introduced during the specimen preparation, traditional quantitative analyses used in medical datasets are difficult to perform on confocal microscopy data and require extensive user intervention. Thus, the visual exploration and analysis of bile ducts pose a challenge in hepatology research, requiring different methods. This paper investigates the application of unsupervised machine learning to extract relevant structures from confocal microscopy datasets representing bile ducts. Our approach consists of pre-processing, clustering, and 3D visualization. For clustering, we explore the density-based spatial clustering for applications with noise (DBSCAN) algorithm, using gradient information for guiding the clustering. We obtained a better visualization of the most prominent vessels and internal structures.</description><identifier>EISSN: 2372-9198</identifier><identifier>EISBN: 9781728122861</identifier><identifier>EISBN: 1728122864</identifier><identifier>DOI: 10.1109/CBMS.2019.00086</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; confocal microscopy data ; Data visualization ; DBSCAN clustering ; Ducts ; image processing ; Image segmentation ; Microscopy ; Three-dimensional displays ; Visualization ; volumetric visualization</subject><ispartof>2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), 2019, p.405-410</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8787482$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8787482$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Beltran, Lizeth A.C.</creatorcontrib><creatorcontrib>Cruz, Carolina U.</creatorcontrib><creatorcontrib>dos Santos, Jorge Luiz</creatorcontrib><creatorcontrib>Shivakumar, Pranavkumar</creatorcontrib><creatorcontrib>Bezerra, Jorge</creatorcontrib><creatorcontrib>Freitas, Carla M.D.S.</creatorcontrib><title>Visualizing Structures in Confocal Microscopy Datasets Through Clusterization: A Case Study on Bile Ducts</title><title>2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)</title><addtitle>CBMS</addtitle><description>Three-dimensional datasets from biological tissues have increased with the evolution of confocal microscopy. Hepatology researchers have used confocal microscopy for investigating the microanatomy of bile ducts. Bile ducts are complex tubular tissues consisting of many juxtaposed microstructures with distinct characteristics. Since confocal images are difficult to segment because of the noise introduced during the specimen preparation, traditional quantitative analyses used in medical datasets are difficult to perform on confocal microscopy data and require extensive user intervention. Thus, the visual exploration and analysis of bile ducts pose a challenge in hepatology research, requiring different methods. This paper investigates the application of unsupervised machine learning to extract relevant structures from confocal microscopy datasets representing bile ducts. Our approach consists of pre-processing, clustering, and 3D visualization. For clustering, we explore the density-based spatial clustering for applications with noise (DBSCAN) algorithm, using gradient information for guiding the clustering. We obtained a better visualization of the most prominent vessels and internal structures.</description><subject>Clustering algorithms</subject><subject>confocal microscopy data</subject><subject>Data visualization</subject><subject>DBSCAN clustering</subject><subject>Ducts</subject><subject>image processing</subject><subject>Image segmentation</subject><subject>Microscopy</subject><subject>Three-dimensional displays</subject><subject>Visualization</subject><subject>volumetric visualization</subject><issn>2372-9198</issn><isbn>9781728122861</isbn><isbn>1728122864</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzE9PwjAYgPFqYiIiZw9e-gWGfd9ua-sNBv5JIB5Ar6R0LdTMjbTdAT69S_T0XJ78CHkANgVg6qmarzdTZKCmjDFZXpGJEhIESkCUJVyTEXKBmQIlb8ldjN-MFRyKYkT8l4-9bvzFtwe6SaE3qQ82Ut_SqmtdZ3RD196ELprudKYLnXS0KdLtMXT94Uirpo_JBn_RyXftM53RahgGqa_PtGvp3DeWLgY13pMbp5toJ_8dk8-X5bZ6y1Yfr-_VbJV5hDJluePI67KWQuJec-MUGClrjdztlZY2hyJ3YBma2hZ7I2TtNKI1giEUTnI-Jo9_rrfW7k7B_-hw3g2cyCXyX8tFWM0</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Beltran, Lizeth A.C.</creator><creator>Cruz, Carolina U.</creator><creator>dos Santos, Jorge Luiz</creator><creator>Shivakumar, Pranavkumar</creator><creator>Bezerra, Jorge</creator><creator>Freitas, Carla M.D.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20190601</creationdate><title>Visualizing Structures in Confocal Microscopy Datasets Through Clusterization: A Case Study on Bile Ducts</title><author>Beltran, Lizeth A.C. ; Cruz, Carolina U. ; dos Santos, Jorge Luiz ; Shivakumar, Pranavkumar ; Bezerra, Jorge ; Freitas, Carla M.D.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i216t-4f323d6d8782ba3cf91c88da23fb9a8e4154f1e02cde5bc78dfa22ec70215f833</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Clustering algorithms</topic><topic>confocal microscopy data</topic><topic>Data visualization</topic><topic>DBSCAN clustering</topic><topic>Ducts</topic><topic>image processing</topic><topic>Image segmentation</topic><topic>Microscopy</topic><topic>Three-dimensional displays</topic><topic>Visualization</topic><topic>volumetric visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Beltran, Lizeth A.C.</creatorcontrib><creatorcontrib>Cruz, Carolina U.</creatorcontrib><creatorcontrib>dos Santos, Jorge Luiz</creatorcontrib><creatorcontrib>Shivakumar, Pranavkumar</creatorcontrib><creatorcontrib>Bezerra, Jorge</creatorcontrib><creatorcontrib>Freitas, Carla M.D.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Beltran, Lizeth A.C.</au><au>Cruz, Carolina U.</au><au>dos Santos, Jorge Luiz</au><au>Shivakumar, Pranavkumar</au><au>Bezerra, Jorge</au><au>Freitas, Carla M.D.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Visualizing Structures in Confocal Microscopy Datasets Through Clusterization: A Case Study on Bile Ducts</atitle><btitle>2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)</btitle><stitle>CBMS</stitle><date>2019-06-01</date><risdate>2019</risdate><spage>405</spage><epage>410</epage><pages>405-410</pages><eissn>2372-9198</eissn><eisbn>9781728122861</eisbn><eisbn>1728122864</eisbn><coden>IEEPAD</coden><abstract>Three-dimensional datasets from biological tissues have increased with the evolution of confocal microscopy. Hepatology researchers have used confocal microscopy for investigating the microanatomy of bile ducts. Bile ducts are complex tubular tissues consisting of many juxtaposed microstructures with distinct characteristics. Since confocal images are difficult to segment because of the noise introduced during the specimen preparation, traditional quantitative analyses used in medical datasets are difficult to perform on confocal microscopy data and require extensive user intervention. Thus, the visual exploration and analysis of bile ducts pose a challenge in hepatology research, requiring different methods. This paper investigates the application of unsupervised machine learning to extract relevant structures from confocal microscopy datasets representing bile ducts. Our approach consists of pre-processing, clustering, and 3D visualization. For clustering, we explore the density-based spatial clustering for applications with noise (DBSCAN) algorithm, using gradient information for guiding the clustering. We obtained a better visualization of the most prominent vessels and internal structures.</abstract><pub>IEEE</pub><doi>10.1109/CBMS.2019.00086</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2372-9198
ispartof 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), 2019, p.405-410
issn 2372-9198
language eng
recordid cdi_ieee_primary_8787482
source IEEE Xplore All Conference Series
subjects Clustering algorithms
confocal microscopy data
Data visualization
DBSCAN clustering
Ducts
image processing
Image segmentation
Microscopy
Three-dimensional displays
Visualization
volumetric visualization
title Visualizing Structures in Confocal Microscopy Datasets Through Clusterization: A Case Study on Bile Ducts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Visualizing%20Structures%20in%20Confocal%20Microscopy%20Datasets%20Through%20Clusterization:%20A%20Case%20Study%20on%20Bile%20Ducts&rft.btitle=2019%20IEEE%2032nd%20International%20Symposium%20on%20Computer-Based%20Medical%20Systems%20(CBMS)&rft.au=Beltran,%20Lizeth%20A.C.&rft.date=2019-06-01&rft.spage=405&rft.epage=410&rft.pages=405-410&rft.eissn=2372-9198&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CBMS.2019.00086&rft.eisbn=9781728122861&rft.eisbn_list=1728122864&rft_dat=%3Cieee_CHZPO%3E8787482%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i216t-4f323d6d8782ba3cf91c88da23fb9a8e4154f1e02cde5bc78dfa22ec70215f833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8787482&rfr_iscdi=true