Loading…
Experimental Demonstration of High-Performance Robotic Balancing
This paper presents the first practical demonstration of a recently developed theory of balance control that aims to achieve high performance in the sense of allowing a robot to make large, fast movements while maintaining its balance on a narrow support. This theory includes a simple method of lean...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 9465 |
container_issue | |
container_start_page | 9459 |
container_title | |
container_volume | |
creator | Driessen, Josephus J. M. Gkikakis, Antonios E. Featherstone, Roy Singh, B. Roodra P. |
description | This paper presents the first practical demonstration of a recently developed theory of balance control that aims to achieve high performance in the sense of allowing a robot to make large, fast movements while maintaining its balance on a narrow support. This theory includes a simple method of leaning in anticipation of future motion commands, which is largely responsible for the high performance. The experiments reported here use a robot acting as a reaction wheel pendulum, and they test only the 2-D version of the theory. The results show that the balance controller's performance in practice closely resembles its theoretical performance. This paper also presents a simple yet accurate balance offset observer that measures the difference between true and estimated balanced configurations. |
doi_str_mv | 10.1109/ICRA.2019.8794447 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8794447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8794447</ieee_id><sourcerecordid>8794447</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5226ea6d1ae63aad2a90c9f282266eeb899188cf6fb0f9ba60ff45ba1bab1c7b3</originalsourceid><addsrcrecordid>eNotj81Kw0AUhUdBsLZ9AHGTF0i8M5PMz84aqy0ULEXBXbmT3qkjSaYkWejbN2BXh_MtDt9h7J5DxjnYx3W5W2QCuM2Mtnme6ys2t9rwQhqlQGi4ZhNRaJ2C0V-37K7vfwBASqUm7Gn5e6IuNNQOWCcv1MS2HzocQmyT6JNVOH6nW-p87BpsK0p20cUhVMkz1mMP7XHGbjzWPc0vOWWfr8uPcpVu3t_W5WKTBq6LIS2EUITqwJGURDwItFBZL8zIFZEz1nJjKq-8A28dKvA-Lxxyh45X2skpe_jfDUS0P43K2P3tL4flGWgSSwE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Experimental Demonstration of High-Performance Robotic Balancing</title><source>IEEE Xplore All Conference Series</source><creator>Driessen, Josephus J. M. ; Gkikakis, Antonios E. ; Featherstone, Roy ; Singh, B. Roodra P.</creator><creatorcontrib>Driessen, Josephus J. M. ; Gkikakis, Antonios E. ; Featherstone, Roy ; Singh, B. Roodra P.</creatorcontrib><description>This paper presents the first practical demonstration of a recently developed theory of balance control that aims to achieve high performance in the sense of allowing a robot to make large, fast movements while maintaining its balance on a narrow support. This theory includes a simple method of leaning in anticipation of future motion commands, which is largely responsible for the high performance. The experiments reported here use a robot acting as a reaction wheel pendulum, and they test only the 2-D version of the theory. The results show that the balance controller's performance in practice closely resembles its theoretical performance. This paper also presents a simple yet accurate balance offset observer that measures the difference between true and estimated balanced configurations.</description><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 9781538660270</identifier><identifier>EISBN: 153866027X</identifier><identifier>DOI: 10.1109/ICRA.2019.8794447</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Mobile robots ; Poles and zeros ; Robot kinematics ; Robot sensing systems ; Wheels</subject><ispartof>2019 International Conference on Robotics and Automation (ICRA), 2019, p.9459-9465</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8794447$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8794447$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Driessen, Josephus J. M.</creatorcontrib><creatorcontrib>Gkikakis, Antonios E.</creatorcontrib><creatorcontrib>Featherstone, Roy</creatorcontrib><creatorcontrib>Singh, B. Roodra P.</creatorcontrib><title>Experimental Demonstration of High-Performance Robotic Balancing</title><title>2019 International Conference on Robotics and Automation (ICRA)</title><addtitle>ICRA</addtitle><description>This paper presents the first practical demonstration of a recently developed theory of balance control that aims to achieve high performance in the sense of allowing a robot to make large, fast movements while maintaining its balance on a narrow support. This theory includes a simple method of leaning in anticipation of future motion commands, which is largely responsible for the high performance. The experiments reported here use a robot acting as a reaction wheel pendulum, and they test only the 2-D version of the theory. The results show that the balance controller's performance in practice closely resembles its theoretical performance. This paper also presents a simple yet accurate balance offset observer that measures the difference between true and estimated balanced configurations.</description><subject>Acceleration</subject><subject>Mobile robots</subject><subject>Poles and zeros</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><subject>Wheels</subject><issn>2577-087X</issn><isbn>9781538660270</isbn><isbn>153866027X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AUhUdBsLZ9AHGTF0i8M5PMz84aqy0ULEXBXbmT3qkjSaYkWejbN2BXh_MtDt9h7J5DxjnYx3W5W2QCuM2Mtnme6ys2t9rwQhqlQGi4ZhNRaJ2C0V-37K7vfwBASqUm7Gn5e6IuNNQOWCcv1MS2HzocQmyT6JNVOH6nW-p87BpsK0p20cUhVMkz1mMP7XHGbjzWPc0vOWWfr8uPcpVu3t_W5WKTBq6LIS2EUITqwJGURDwItFBZL8zIFZEz1nJjKq-8A28dKvA-Lxxyh45X2skpe_jfDUS0P43K2P3tL4flGWgSSwE</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Driessen, Josephus J. M.</creator><creator>Gkikakis, Antonios E.</creator><creator>Featherstone, Roy</creator><creator>Singh, B. Roodra P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201905</creationdate><title>Experimental Demonstration of High-Performance Robotic Balancing</title><author>Driessen, Josephus J. M. ; Gkikakis, Antonios E. ; Featherstone, Roy ; Singh, B. Roodra P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5226ea6d1ae63aad2a90c9f282266eeb899188cf6fb0f9ba60ff45ba1bab1c7b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Mobile robots</topic><topic>Poles and zeros</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><topic>Wheels</topic><toplevel>online_resources</toplevel><creatorcontrib>Driessen, Josephus J. M.</creatorcontrib><creatorcontrib>Gkikakis, Antonios E.</creatorcontrib><creatorcontrib>Featherstone, Roy</creatorcontrib><creatorcontrib>Singh, B. Roodra P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Driessen, Josephus J. M.</au><au>Gkikakis, Antonios E.</au><au>Featherstone, Roy</au><au>Singh, B. Roodra P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Experimental Demonstration of High-Performance Robotic Balancing</atitle><btitle>2019 International Conference on Robotics and Automation (ICRA)</btitle><stitle>ICRA</stitle><date>2019-05</date><risdate>2019</risdate><spage>9459</spage><epage>9465</epage><pages>9459-9465</pages><eissn>2577-087X</eissn><eisbn>9781538660270</eisbn><eisbn>153866027X</eisbn><abstract>This paper presents the first practical demonstration of a recently developed theory of balance control that aims to achieve high performance in the sense of allowing a robot to make large, fast movements while maintaining its balance on a narrow support. This theory includes a simple method of leaning in anticipation of future motion commands, which is largely responsible for the high performance. The experiments reported here use a robot acting as a reaction wheel pendulum, and they test only the 2-D version of the theory. The results show that the balance controller's performance in practice closely resembles its theoretical performance. This paper also presents a simple yet accurate balance offset observer that measures the difference between true and estimated balanced configurations.</abstract><pub>IEEE</pub><doi>10.1109/ICRA.2019.8794447</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2577-087X |
ispartof | 2019 International Conference on Robotics and Automation (ICRA), 2019, p.9459-9465 |
issn | 2577-087X |
language | eng |
recordid | cdi_ieee_primary_8794447 |
source | IEEE Xplore All Conference Series |
subjects | Acceleration Mobile robots Poles and zeros Robot kinematics Robot sensing systems Wheels |
title | Experimental Demonstration of High-Performance Robotic Balancing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Experimental%20Demonstration%20of%20High-Performance%20Robotic%20Balancing&rft.btitle=2019%20International%20Conference%20on%20Robotics%20and%20Automation%20(ICRA)&rft.au=Driessen,%20Josephus%20J.%20M.&rft.date=2019-05&rft.spage=9459&rft.epage=9465&rft.pages=9459-9465&rft.eissn=2577-087X&rft_id=info:doi/10.1109/ICRA.2019.8794447&rft.eisbn=9781538660270&rft.eisbn_list=153866027X&rft_dat=%3Cieee_CHZPO%3E8794447%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-5226ea6d1ae63aad2a90c9f282266eeb899188cf6fb0f9ba60ff45ba1bab1c7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8794447&rfr_iscdi=true |