Loading…

Sensor Selection under Unknown but Bounded Disturbances in Multi- Target Tracking Problem

The problem of sensor selection arises in various applications. In multi-target tracking, the main challenge is to select sensors for each target in such a way as to minimize the estimation error, taking into account the limitations of the computation and communication resources of the sensors. In t...

Full description

Saved in:
Bibliographic Details
Main Authors: Erofeeva, Victoria, Granichin, Oleg, Granichina, Olga, Sergeenko, Anna, Trapitsin, Sergey
Format: Conference Proceeding
Language:English
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 220
container_issue
container_start_page 215
container_title
container_volume
creator Erofeeva, Victoria
Granichin, Oleg
Granichina, Olga
Sergeenko, Anna
Trapitsin, Sergey
description The problem of sensor selection arises in various applications. In multi-target tracking, the main challenge is to select sensors for each target in such a way as to minimize the estimation error, taking into account the limitations of the computation and communication resources of the sensors. In this paper, we deal with two problems arising in sensor selection. First, we try to reduce the situations, in which selected sensors might be loaded more than the rest of the nodes. Secondly, we discard the assumption, requiring the measurement noise to have the Gaussian distribution. Instead of that, we consider the measurements corrupted by the unknown but bounded noise. We present a sensor selection strategy based on linear matrix inequalities and show its performance.
doi_str_mv 10.1109/MED.2019.8798526
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8798526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8798526</ieee_id><sourcerecordid>8798526</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8a32c89d75fb559783b18112651ed99f1ffdd36f4286332d5b2dae694502ff973</originalsourceid><addsrcrecordid>eNotkE9LwzAcQKMgOOfugpd8gdb8kqZJjrrNP7ChsA70NNLmlxHXpZK2iN9exJ0evMM7PEJugOUAzNytl4ucMzC5VkZLXp6RK1BcA9dMvJ-TCS-UyIRkxSWZ9f0nYwxKDpyxCfnYYOy7RDfYYjOELtIxOkx0Gw-x-460Hgf60P05RxehH8ZU29hgT0Ok67EdQkYrm_Y40CrZ5hDinr6lrm7xeE0uvG17nJ04JdvHZTV_zlavTy_z-1UWQMkh01bwRhunpK-lNEqLGjQALyWgM8aD986J0hdcl0JwJ2vuLJamkIx7b5SYktv_bkDE3VcKR5t-dqcT4hdGSVHj</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sensor Selection under Unknown but Bounded Disturbances in Multi- Target Tracking Problem</title><source>IEEE Xplore All Conference Series</source><creator>Erofeeva, Victoria ; Granichin, Oleg ; Granichina, Olga ; Sergeenko, Anna ; Trapitsin, Sergey</creator><creatorcontrib>Erofeeva, Victoria ; Granichin, Oleg ; Granichina, Olga ; Sergeenko, Anna ; Trapitsin, Sergey</creatorcontrib><description>The problem of sensor selection arises in various applications. In multi-target tracking, the main challenge is to select sensors for each target in such a way as to minimize the estimation error, taking into account the limitations of the computation and communication resources of the sensors. In this paper, we deal with two problems arising in sensor selection. First, we try to reduce the situations, in which selected sensors might be loaded more than the rest of the nodes. Secondly, we discard the assumption, requiring the measurement noise to have the Gaussian distribution. Instead of that, we consider the measurements corrupted by the unknown but bounded noise. We present a sensor selection strategy based on linear matrix inequalities and show its performance.</description><identifier>EISSN: 2473-3504</identifier><identifier>EISBN: 172812803X</identifier><identifier>EISBN: 9781728128030</identifier><identifier>DOI: 10.1109/MED.2019.8798526</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>2019 27th Mediterranean Conference on Control and Automation (MED), 2019, p.215-220</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8798526$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8798526$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Erofeeva, Victoria</creatorcontrib><creatorcontrib>Granichin, Oleg</creatorcontrib><creatorcontrib>Granichina, Olga</creatorcontrib><creatorcontrib>Sergeenko, Anna</creatorcontrib><creatorcontrib>Trapitsin, Sergey</creatorcontrib><title>Sensor Selection under Unknown but Bounded Disturbances in Multi- Target Tracking Problem</title><title>2019 27th Mediterranean Conference on Control and Automation (MED)</title><addtitle>MED</addtitle><description>The problem of sensor selection arises in various applications. In multi-target tracking, the main challenge is to select sensors for each target in such a way as to minimize the estimation error, taking into account the limitations of the computation and communication resources of the sensors. In this paper, we deal with two problems arising in sensor selection. First, we try to reduce the situations, in which selected sensors might be loaded more than the rest of the nodes. Secondly, we discard the assumption, requiring the measurement noise to have the Gaussian distribution. Instead of that, we consider the measurements corrupted by the unknown but bounded noise. We present a sensor selection strategy based on linear matrix inequalities and show its performance.</description><issn>2473-3504</issn><isbn>172812803X</isbn><isbn>9781728128030</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE9LwzAcQKMgOOfugpd8gdb8kqZJjrrNP7ChsA70NNLmlxHXpZK2iN9exJ0evMM7PEJugOUAzNytl4ucMzC5VkZLXp6RK1BcA9dMvJ-TCS-UyIRkxSWZ9f0nYwxKDpyxCfnYYOy7RDfYYjOELtIxOkx0Gw-x-460Hgf60P05RxehH8ZU29hgT0Ok67EdQkYrm_Y40CrZ5hDinr6lrm7xeE0uvG17nJ04JdvHZTV_zlavTy_z-1UWQMkh01bwRhunpK-lNEqLGjQALyWgM8aD986J0hdcl0JwJ2vuLJamkIx7b5SYktv_bkDE3VcKR5t-dqcT4hdGSVHj</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Erofeeva, Victoria</creator><creator>Granichin, Oleg</creator><creator>Granichina, Olga</creator><creator>Sergeenko, Anna</creator><creator>Trapitsin, Sergey</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201907</creationdate><title>Sensor Selection under Unknown but Bounded Disturbances in Multi- Target Tracking Problem</title><author>Erofeeva, Victoria ; Granichin, Oleg ; Granichina, Olga ; Sergeenko, Anna ; Trapitsin, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8a32c89d75fb559783b18112651ed99f1ffdd36f4286332d5b2dae694502ff973</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Erofeeva, Victoria</creatorcontrib><creatorcontrib>Granichin, Oleg</creatorcontrib><creatorcontrib>Granichina, Olga</creatorcontrib><creatorcontrib>Sergeenko, Anna</creatorcontrib><creatorcontrib>Trapitsin, Sergey</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Erofeeva, Victoria</au><au>Granichin, Oleg</au><au>Granichina, Olga</au><au>Sergeenko, Anna</au><au>Trapitsin, Sergey</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sensor Selection under Unknown but Bounded Disturbances in Multi- Target Tracking Problem</atitle><btitle>2019 27th Mediterranean Conference on Control and Automation (MED)</btitle><stitle>MED</stitle><date>2019-07</date><risdate>2019</risdate><spage>215</spage><epage>220</epage><pages>215-220</pages><eissn>2473-3504</eissn><eisbn>172812803X</eisbn><eisbn>9781728128030</eisbn><abstract>The problem of sensor selection arises in various applications. In multi-target tracking, the main challenge is to select sensors for each target in such a way as to minimize the estimation error, taking into account the limitations of the computation and communication resources of the sensors. In this paper, we deal with two problems arising in sensor selection. First, we try to reduce the situations, in which selected sensors might be loaded more than the rest of the nodes. Secondly, we discard the assumption, requiring the measurement noise to have the Gaussian distribution. Instead of that, we consider the measurements corrupted by the unknown but bounded noise. We present a sensor selection strategy based on linear matrix inequalities and show its performance.</abstract><pub>IEEE</pub><doi>10.1109/MED.2019.8798526</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2473-3504
ispartof 2019 27th Mediterranean Conference on Control and Automation (MED), 2019, p.215-220
issn 2473-3504
language eng
recordid cdi_ieee_primary_8798526
source IEEE Xplore All Conference Series
title Sensor Selection under Unknown but Bounded Disturbances in Multi- Target Tracking Problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sensor%20Selection%20under%20Unknown%20but%20Bounded%20Disturbances%20in%20Multi-%20Target%20Tracking%20Problem&rft.btitle=2019%2027th%20Mediterranean%20Conference%20on%20Control%20and%20Automation%20(MED)&rft.au=Erofeeva,%20Victoria&rft.date=2019-07&rft.spage=215&rft.epage=220&rft.pages=215-220&rft.eissn=2473-3504&rft_id=info:doi/10.1109/MED.2019.8798526&rft.eisbn=172812803X&rft.eisbn_list=9781728128030&rft_dat=%3Cieee_CHZPO%3E8798526%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-8a32c89d75fb559783b18112651ed99f1ffdd36f4286332d5b2dae694502ff973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8798526&rfr_iscdi=true