Loading…

Multi-Modal Learning With Generalizable Nonlinear Dimensionality Reduction

In practical machine learning settings, there often exist relations or links between data from different modalities. The goal of multi-modal learning algorithms is to efficiently use the information available in different modalities to solve multi-modal classification or retrieval problems. In this...

Full description

Saved in:
Bibliographic Details
Main Authors: Kaya, Semih, Vural, Elif
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2143
container_issue
container_start_page 2139
container_title
container_volume
creator Kaya, Semih
Vural, Elif
description In practical machine learning settings, there often exist relations or links between data from different modalities. The goal of multi-modal learning algorithms is to efficiently use the information available in different modalities to solve multi-modal classification or retrieval problems. In this study, we propose a multi-modal supervised representation learning algorithm based on nonlinear dimensionality reduction. Nonlinear embeddings often yield more flexible representations compared to linear counterparts especially in case of high dissimilarity between the data geometries in different modalities. Based on recent performance bounds on nonlinear dimensionality reduction, we propose an optimization objective aiming to improve the intra- and inter-modal within-class compactness and between-class separation, as well as the Lipschitz regularity of the interpolator that generalizes the embedding to the whole data space. Experiments in multi-view face recognition and image-text retrieval applications show that the proposed method yields promising performance in comparison with state-of-the-art multi-modal learning methods.
doi_str_mv 10.1109/ICIP.2019.8803196
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8803196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8803196</ieee_id><sourcerecordid>8803196</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-2c63b953d5b1d2dc1994febf56e7362e2b2349a0f45c577bf820e43d90d5e19b3</originalsourceid><addsrcrecordid>eNotj81Kw0AUhUdBsNY-gLjJC6TOf-YuJWobSVVEcVlmMjc6Mp1Iki7q0xuwq8PH-ThwCLlidMkYhZuqrF6WnDJYGkMFA31CFlAYpoTRmkvQp2TGhWG5URLOycUwfFM6-YLNyONmH8eQbzpvY1aj7VNIn9lHGL-yFSbsbQy_1kXMnroUQ5qE7C7sMA2hS1M3HrJX9PtmnPCSnLU2Drg45py8P9y_leu8fl5V5W2dB07FmPNGCwdKeOWY575hALJF1yqNhdAcueNCgqWtVI0qCtcaTlEKD9QrZODEnFz_7wZE3P70YWf7w_Z4XfwBgv5NjA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-Modal Learning With Generalizable Nonlinear Dimensionality Reduction</title><source>IEEE Xplore All Conference Series</source><creator>Kaya, Semih ; Vural, Elif</creator><creatorcontrib>Kaya, Semih ; Vural, Elif</creatorcontrib><description>In practical machine learning settings, there often exist relations or links between data from different modalities. The goal of multi-modal learning algorithms is to efficiently use the information available in different modalities to solve multi-modal classification or retrieval problems. In this study, we propose a multi-modal supervised representation learning algorithm based on nonlinear dimensionality reduction. Nonlinear embeddings often yield more flexible representations compared to linear counterparts especially in case of high dissimilarity between the data geometries in different modalities. Based on recent performance bounds on nonlinear dimensionality reduction, we propose an optimization objective aiming to improve the intra- and inter-modal within-class compactness and between-class separation, as well as the Lipschitz regularity of the interpolator that generalizes the embedding to the whole data space. Experiments in multi-view face recognition and image-text retrieval applications show that the proposed method yields promising performance in comparison with state-of-the-art multi-modal learning methods.</description><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781538662496</identifier><identifier>EISBN: 1538662493</identifier><identifier>DOI: 10.1109/ICIP.2019.8803196</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cross-modal learning ; cross-modal retrieval ; Dimensionality reduction ; Interpolation ; Kernel ; Laplace equations ; Learning systems ; multi-view learning ; nonlinear embeddings ; Optimization ; RBF interpolators ; Training</subject><ispartof>2019 IEEE International Conference on Image Processing (ICIP), 2019, p.2139-2143</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8803196$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8803196$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kaya, Semih</creatorcontrib><creatorcontrib>Vural, Elif</creatorcontrib><title>Multi-Modal Learning With Generalizable Nonlinear Dimensionality Reduction</title><title>2019 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>In practical machine learning settings, there often exist relations or links between data from different modalities. The goal of multi-modal learning algorithms is to efficiently use the information available in different modalities to solve multi-modal classification or retrieval problems. In this study, we propose a multi-modal supervised representation learning algorithm based on nonlinear dimensionality reduction. Nonlinear embeddings often yield more flexible representations compared to linear counterparts especially in case of high dissimilarity between the data geometries in different modalities. Based on recent performance bounds on nonlinear dimensionality reduction, we propose an optimization objective aiming to improve the intra- and inter-modal within-class compactness and between-class separation, as well as the Lipschitz regularity of the interpolator that generalizes the embedding to the whole data space. Experiments in multi-view face recognition and image-text retrieval applications show that the proposed method yields promising performance in comparison with state-of-the-art multi-modal learning methods.</description><subject>Cross-modal learning</subject><subject>cross-modal retrieval</subject><subject>Dimensionality reduction</subject><subject>Interpolation</subject><subject>Kernel</subject><subject>Laplace equations</subject><subject>Learning systems</subject><subject>multi-view learning</subject><subject>nonlinear embeddings</subject><subject>Optimization</subject><subject>RBF interpolators</subject><subject>Training</subject><issn>2381-8549</issn><isbn>9781538662496</isbn><isbn>1538662493</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AUhUdBsNY-gLjJC6TOf-YuJWobSVVEcVlmMjc6Mp1Iki7q0xuwq8PH-ThwCLlidMkYhZuqrF6WnDJYGkMFA31CFlAYpoTRmkvQp2TGhWG5URLOycUwfFM6-YLNyONmH8eQbzpvY1aj7VNIn9lHGL-yFSbsbQy_1kXMnroUQ5qE7C7sMA2hS1M3HrJX9PtmnPCSnLU2Drg45py8P9y_leu8fl5V5W2dB07FmPNGCwdKeOWY575hALJF1yqNhdAcueNCgqWtVI0qCtcaTlEKD9QrZODEnFz_7wZE3P70YWf7w_Z4XfwBgv5NjA</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Kaya, Semih</creator><creator>Vural, Elif</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201909</creationdate><title>Multi-Modal Learning With Generalizable Nonlinear Dimensionality Reduction</title><author>Kaya, Semih ; Vural, Elif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-2c63b953d5b1d2dc1994febf56e7362e2b2349a0f45c577bf820e43d90d5e19b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cross-modal learning</topic><topic>cross-modal retrieval</topic><topic>Dimensionality reduction</topic><topic>Interpolation</topic><topic>Kernel</topic><topic>Laplace equations</topic><topic>Learning systems</topic><topic>multi-view learning</topic><topic>nonlinear embeddings</topic><topic>Optimization</topic><topic>RBF interpolators</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaya, Semih</creatorcontrib><creatorcontrib>Vural, Elif</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaya, Semih</au><au>Vural, Elif</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-Modal Learning With Generalizable Nonlinear Dimensionality Reduction</atitle><btitle>2019 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2019-09</date><risdate>2019</risdate><spage>2139</spage><epage>2143</epage><pages>2139-2143</pages><eissn>2381-8549</eissn><eisbn>9781538662496</eisbn><eisbn>1538662493</eisbn><abstract>In practical machine learning settings, there often exist relations or links between data from different modalities. The goal of multi-modal learning algorithms is to efficiently use the information available in different modalities to solve multi-modal classification or retrieval problems. In this study, we propose a multi-modal supervised representation learning algorithm based on nonlinear dimensionality reduction. Nonlinear embeddings often yield more flexible representations compared to linear counterparts especially in case of high dissimilarity between the data geometries in different modalities. Based on recent performance bounds on nonlinear dimensionality reduction, we propose an optimization objective aiming to improve the intra- and inter-modal within-class compactness and between-class separation, as well as the Lipschitz regularity of the interpolator that generalizes the embedding to the whole data space. Experiments in multi-view face recognition and image-text retrieval applications show that the proposed method yields promising performance in comparison with state-of-the-art multi-modal learning methods.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2019.8803196</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2381-8549
ispartof 2019 IEEE International Conference on Image Processing (ICIP), 2019, p.2139-2143
issn 2381-8549
language eng
recordid cdi_ieee_primary_8803196
source IEEE Xplore All Conference Series
subjects Cross-modal learning
cross-modal retrieval
Dimensionality reduction
Interpolation
Kernel
Laplace equations
Learning systems
multi-view learning
nonlinear embeddings
Optimization
RBF interpolators
Training
title Multi-Modal Learning With Generalizable Nonlinear Dimensionality Reduction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-Modal%20Learning%20With%20Generalizable%20Nonlinear%20Dimensionality%20Reduction&rft.btitle=2019%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Kaya,%20Semih&rft.date=2019-09&rft.spage=2139&rft.epage=2143&rft.pages=2139-2143&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP.2019.8803196&rft.eisbn=9781538662496&rft.eisbn_list=1538662493&rft_dat=%3Cieee_CHZPO%3E8803196%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-2c63b953d5b1d2dc1994febf56e7362e2b2349a0f45c577bf820e43d90d5e19b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8803196&rfr_iscdi=true