Loading…
Multi-Modal Learning With Generalizable Nonlinear Dimensionality Reduction
In practical machine learning settings, there often exist relations or links between data from different modalities. The goal of multi-modal learning algorithms is to efficiently use the information available in different modalities to solve multi-modal classification or retrieval problems. In this...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2143 |
container_issue | |
container_start_page | 2139 |
container_title | |
container_volume | |
creator | Kaya, Semih Vural, Elif |
description | In practical machine learning settings, there often exist relations or links between data from different modalities. The goal of multi-modal learning algorithms is to efficiently use the information available in different modalities to solve multi-modal classification or retrieval problems. In this study, we propose a multi-modal supervised representation learning algorithm based on nonlinear dimensionality reduction. Nonlinear embeddings often yield more flexible representations compared to linear counterparts especially in case of high dissimilarity between the data geometries in different modalities. Based on recent performance bounds on nonlinear dimensionality reduction, we propose an optimization objective aiming to improve the intra- and inter-modal within-class compactness and between-class separation, as well as the Lipschitz regularity of the interpolator that generalizes the embedding to the whole data space. Experiments in multi-view face recognition and image-text retrieval applications show that the proposed method yields promising performance in comparison with state-of-the-art multi-modal learning methods. |
doi_str_mv | 10.1109/ICIP.2019.8803196 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8803196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8803196</ieee_id><sourcerecordid>8803196</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-2c63b953d5b1d2dc1994febf56e7362e2b2349a0f45c577bf820e43d90d5e19b3</originalsourceid><addsrcrecordid>eNotj81Kw0AUhUdBsNY-gLjJC6TOf-YuJWobSVVEcVlmMjc6Mp1Iki7q0xuwq8PH-ThwCLlidMkYhZuqrF6WnDJYGkMFA31CFlAYpoTRmkvQp2TGhWG5URLOycUwfFM6-YLNyONmH8eQbzpvY1aj7VNIn9lHGL-yFSbsbQy_1kXMnroUQ5qE7C7sMA2hS1M3HrJX9PtmnPCSnLU2Drg45py8P9y_leu8fl5V5W2dB07FmPNGCwdKeOWY575hALJF1yqNhdAcueNCgqWtVI0qCtcaTlEKD9QrZODEnFz_7wZE3P70YWf7w_Z4XfwBgv5NjA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-Modal Learning With Generalizable Nonlinear Dimensionality Reduction</title><source>IEEE Xplore All Conference Series</source><creator>Kaya, Semih ; Vural, Elif</creator><creatorcontrib>Kaya, Semih ; Vural, Elif</creatorcontrib><description>In practical machine learning settings, there often exist relations or links between data from different modalities. The goal of multi-modal learning algorithms is to efficiently use the information available in different modalities to solve multi-modal classification or retrieval problems. In this study, we propose a multi-modal supervised representation learning algorithm based on nonlinear dimensionality reduction. Nonlinear embeddings often yield more flexible representations compared to linear counterparts especially in case of high dissimilarity between the data geometries in different modalities. Based on recent performance bounds on nonlinear dimensionality reduction, we propose an optimization objective aiming to improve the intra- and inter-modal within-class compactness and between-class separation, as well as the Lipschitz regularity of the interpolator that generalizes the embedding to the whole data space. Experiments in multi-view face recognition and image-text retrieval applications show that the proposed method yields promising performance in comparison with state-of-the-art multi-modal learning methods.</description><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781538662496</identifier><identifier>EISBN: 1538662493</identifier><identifier>DOI: 10.1109/ICIP.2019.8803196</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cross-modal learning ; cross-modal retrieval ; Dimensionality reduction ; Interpolation ; Kernel ; Laplace equations ; Learning systems ; multi-view learning ; nonlinear embeddings ; Optimization ; RBF interpolators ; Training</subject><ispartof>2019 IEEE International Conference on Image Processing (ICIP), 2019, p.2139-2143</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8803196$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8803196$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kaya, Semih</creatorcontrib><creatorcontrib>Vural, Elif</creatorcontrib><title>Multi-Modal Learning With Generalizable Nonlinear Dimensionality Reduction</title><title>2019 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>In practical machine learning settings, there often exist relations or links between data from different modalities. The goal of multi-modal learning algorithms is to efficiently use the information available in different modalities to solve multi-modal classification or retrieval problems. In this study, we propose a multi-modal supervised representation learning algorithm based on nonlinear dimensionality reduction. Nonlinear embeddings often yield more flexible representations compared to linear counterparts especially in case of high dissimilarity between the data geometries in different modalities. Based on recent performance bounds on nonlinear dimensionality reduction, we propose an optimization objective aiming to improve the intra- and inter-modal within-class compactness and between-class separation, as well as the Lipschitz regularity of the interpolator that generalizes the embedding to the whole data space. Experiments in multi-view face recognition and image-text retrieval applications show that the proposed method yields promising performance in comparison with state-of-the-art multi-modal learning methods.</description><subject>Cross-modal learning</subject><subject>cross-modal retrieval</subject><subject>Dimensionality reduction</subject><subject>Interpolation</subject><subject>Kernel</subject><subject>Laplace equations</subject><subject>Learning systems</subject><subject>multi-view learning</subject><subject>nonlinear embeddings</subject><subject>Optimization</subject><subject>RBF interpolators</subject><subject>Training</subject><issn>2381-8549</issn><isbn>9781538662496</isbn><isbn>1538662493</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AUhUdBsNY-gLjJC6TOf-YuJWobSVVEcVlmMjc6Mp1Iki7q0xuwq8PH-ThwCLlidMkYhZuqrF6WnDJYGkMFA31CFlAYpoTRmkvQp2TGhWG5URLOycUwfFM6-YLNyONmH8eQbzpvY1aj7VNIn9lHGL-yFSbsbQy_1kXMnroUQ5qE7C7sMA2hS1M3HrJX9PtmnPCSnLU2Drg45py8P9y_leu8fl5V5W2dB07FmPNGCwdKeOWY575hALJF1yqNhdAcueNCgqWtVI0qCtcaTlEKD9QrZODEnFz_7wZE3P70YWf7w_Z4XfwBgv5NjA</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Kaya, Semih</creator><creator>Vural, Elif</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201909</creationdate><title>Multi-Modal Learning With Generalizable Nonlinear Dimensionality Reduction</title><author>Kaya, Semih ; Vural, Elif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-2c63b953d5b1d2dc1994febf56e7362e2b2349a0f45c577bf820e43d90d5e19b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cross-modal learning</topic><topic>cross-modal retrieval</topic><topic>Dimensionality reduction</topic><topic>Interpolation</topic><topic>Kernel</topic><topic>Laplace equations</topic><topic>Learning systems</topic><topic>multi-view learning</topic><topic>nonlinear embeddings</topic><topic>Optimization</topic><topic>RBF interpolators</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaya, Semih</creatorcontrib><creatorcontrib>Vural, Elif</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaya, Semih</au><au>Vural, Elif</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-Modal Learning With Generalizable Nonlinear Dimensionality Reduction</atitle><btitle>2019 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2019-09</date><risdate>2019</risdate><spage>2139</spage><epage>2143</epage><pages>2139-2143</pages><eissn>2381-8549</eissn><eisbn>9781538662496</eisbn><eisbn>1538662493</eisbn><abstract>In practical machine learning settings, there often exist relations or links between data from different modalities. The goal of multi-modal learning algorithms is to efficiently use the information available in different modalities to solve multi-modal classification or retrieval problems. In this study, we propose a multi-modal supervised representation learning algorithm based on nonlinear dimensionality reduction. Nonlinear embeddings often yield more flexible representations compared to linear counterparts especially in case of high dissimilarity between the data geometries in different modalities. Based on recent performance bounds on nonlinear dimensionality reduction, we propose an optimization objective aiming to improve the intra- and inter-modal within-class compactness and between-class separation, as well as the Lipschitz regularity of the interpolator that generalizes the embedding to the whole data space. Experiments in multi-view face recognition and image-text retrieval applications show that the proposed method yields promising performance in comparison with state-of-the-art multi-modal learning methods.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2019.8803196</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2381-8549 |
ispartof | 2019 IEEE International Conference on Image Processing (ICIP), 2019, p.2139-2143 |
issn | 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_8803196 |
source | IEEE Xplore All Conference Series |
subjects | Cross-modal learning cross-modal retrieval Dimensionality reduction Interpolation Kernel Laplace equations Learning systems multi-view learning nonlinear embeddings Optimization RBF interpolators Training |
title | Multi-Modal Learning With Generalizable Nonlinear Dimensionality Reduction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-Modal%20Learning%20With%20Generalizable%20Nonlinear%20Dimensionality%20Reduction&rft.btitle=2019%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Kaya,%20Semih&rft.date=2019-09&rft.spage=2139&rft.epage=2143&rft.pages=2139-2143&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP.2019.8803196&rft.eisbn=9781538662496&rft.eisbn_list=1538662493&rft_dat=%3Cieee_CHZPO%3E8803196%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-2c63b953d5b1d2dc1994febf56e7362e2b2349a0f45c577bf820e43d90d5e19b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8803196&rfr_iscdi=true |