Loading…

Complexity Reduction of Multi-Level DP Quantization Through Inter-Level Redundancy Elimination

Designing an optimum quantizer can be treated as the optimization problem of finding the quantization indices that minimize the quantization error. One solution to the optimization problem, DP quantization, is based on dynamic programming. Some applications, such as bit-depth scalable codec and tone...

Full description

Saved in:
Bibliographic Details
Main Authors: Bandoh, Yukihiro, Takamura, Seishi, Shimizu, Atsushi
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4079
container_issue
container_start_page 4075
container_title
container_volume
creator Bandoh, Yukihiro
Takamura, Seishi
Shimizu, Atsushi
description Designing an optimum quantizer can be treated as the optimization problem of finding the quantization indices that minimize the quantization error. One solution to the optimization problem, DP quantization, is based on dynamic programming. Some applications, such as bit-depth scalable codec and tone mapping, require the construction of multiple quantizers with different quantization levels, for example, from 12bit/channel to 10bit/channel and 8bit/channel. Unfortunately, conventional DP quantization optimizes the quantizer for just one quantization level. That is, it is unable to simultaneously optimize multiple quantizers. Therefore, when DP quantization is used to design multiple quantizers, there are many redundant computations in the optimization process. This paper proposes an extended DP quantization with a complexity reduction algorithm for the optimal design of multiple quantizers. Experiments show that the proposed algorithm reduces complexity by 20.3%, on average, compared to conventional DP quantization.
doi_str_mv 10.1109/ICIP.2019.8803433
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8803433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8803433</ieee_id><sourcerecordid>8803433</sourcerecordid><originalsourceid>FETCH-LOGICAL-i269t-f97f94a5672ccbd41db87fb1dc9e5e59fb27d602a688f2319fba261dd126fddf3</originalsourceid><addsrcrecordid>eNotkFFPgzAcxKuJiXPuAxhf-gWY_bdQ2keDU0kwTjNfXQptXQ2UBYoRP71z8nTJ3e_u4RC6ArIEIPImz_L1khKQSyEIixk7QQuZCkiY4JzGkp-iGWUCIpHE8hxd9P0nIQeewQy9Z22zr823CyN-NXqogms9bi1-GurgosJ8mRrfrfHLoHxwP-oYb3ZdO3zscO6D6Sbmr-y18tWIV7VrnD-il-jMqro3i0nn6O1-tckeo-L5Ic9ui8hRLkNkZWplrBKe0qoqdQy6FKktQVfSJCaRtqSp5oQqLoSlDA6Gohy0Bsqt1pbN0fX_rjPGbPeda1Q3bqc72C8L7FXF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Complexity Reduction of Multi-Level DP Quantization Through Inter-Level Redundancy Elimination</title><source>IEEE Xplore All Conference Series</source><creator>Bandoh, Yukihiro ; Takamura, Seishi ; Shimizu, Atsushi</creator><creatorcontrib>Bandoh, Yukihiro ; Takamura, Seishi ; Shimizu, Atsushi</creatorcontrib><description>Designing an optimum quantizer can be treated as the optimization problem of finding the quantization indices that minimize the quantization error. One solution to the optimization problem, DP quantization, is based on dynamic programming. Some applications, such as bit-depth scalable codec and tone mapping, require the construction of multiple quantizers with different quantization levels, for example, from 12bit/channel to 10bit/channel and 8bit/channel. Unfortunately, conventional DP quantization optimizes the quantizer for just one quantization level. That is, it is unable to simultaneously optimize multiple quantizers. Therefore, when DP quantization is used to design multiple quantizers, there are many redundant computations in the optimization process. This paper proposes an extended DP quantization with a complexity reduction algorithm for the optimal design of multiple quantizers. Experiments show that the proposed algorithm reduces complexity by 20.3%, on average, compared to conventional DP quantization.</description><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781538662496</identifier><identifier>EISBN: 1538662493</identifier><identifier>DOI: 10.1109/ICIP.2019.8803433</identifier><language>eng</language><publisher>IEEE</publisher><subject>bit-depth scalability ; Complexity theory ; Dynamic programming ; Heuristic algorithms ; Histograms ; Indexes ; multi-layered structure ; Optimization ; quantization ; Quantization (signal)</subject><ispartof>2019 IEEE International Conference on Image Processing (ICIP), 2019, p.4075-4079</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8803433$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8803433$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bandoh, Yukihiro</creatorcontrib><creatorcontrib>Takamura, Seishi</creatorcontrib><creatorcontrib>Shimizu, Atsushi</creatorcontrib><title>Complexity Reduction of Multi-Level DP Quantization Through Inter-Level Redundancy Elimination</title><title>2019 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>Designing an optimum quantizer can be treated as the optimization problem of finding the quantization indices that minimize the quantization error. One solution to the optimization problem, DP quantization, is based on dynamic programming. Some applications, such as bit-depth scalable codec and tone mapping, require the construction of multiple quantizers with different quantization levels, for example, from 12bit/channel to 10bit/channel and 8bit/channel. Unfortunately, conventional DP quantization optimizes the quantizer for just one quantization level. That is, it is unable to simultaneously optimize multiple quantizers. Therefore, when DP quantization is used to design multiple quantizers, there are many redundant computations in the optimization process. This paper proposes an extended DP quantization with a complexity reduction algorithm for the optimal design of multiple quantizers. Experiments show that the proposed algorithm reduces complexity by 20.3%, on average, compared to conventional DP quantization.</description><subject>bit-depth scalability</subject><subject>Complexity theory</subject><subject>Dynamic programming</subject><subject>Heuristic algorithms</subject><subject>Histograms</subject><subject>Indexes</subject><subject>multi-layered structure</subject><subject>Optimization</subject><subject>quantization</subject><subject>Quantization (signal)</subject><issn>2381-8549</issn><isbn>9781538662496</isbn><isbn>1538662493</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkFFPgzAcxKuJiXPuAxhf-gWY_bdQ2keDU0kwTjNfXQptXQ2UBYoRP71z8nTJ3e_u4RC6ArIEIPImz_L1khKQSyEIixk7QQuZCkiY4JzGkp-iGWUCIpHE8hxd9P0nIQeewQy9Z22zr823CyN-NXqogms9bi1-GurgosJ8mRrfrfHLoHxwP-oYb3ZdO3zscO6D6Sbmr-y18tWIV7VrnD-il-jMqro3i0nn6O1-tckeo-L5Ic9ui8hRLkNkZWplrBKe0qoqdQy6FKktQVfSJCaRtqSp5oQqLoSlDA6Gohy0Bsqt1pbN0fX_rjPGbPeda1Q3bqc72C8L7FXF</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Bandoh, Yukihiro</creator><creator>Takamura, Seishi</creator><creator>Shimizu, Atsushi</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20190901</creationdate><title>Complexity Reduction of Multi-Level DP Quantization Through Inter-Level Redundancy Elimination</title><author>Bandoh, Yukihiro ; Takamura, Seishi ; Shimizu, Atsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i269t-f97f94a5672ccbd41db87fb1dc9e5e59fb27d602a688f2319fba261dd126fddf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>bit-depth scalability</topic><topic>Complexity theory</topic><topic>Dynamic programming</topic><topic>Heuristic algorithms</topic><topic>Histograms</topic><topic>Indexes</topic><topic>multi-layered structure</topic><topic>Optimization</topic><topic>quantization</topic><topic>Quantization (signal)</topic><toplevel>online_resources</toplevel><creatorcontrib>Bandoh, Yukihiro</creatorcontrib><creatorcontrib>Takamura, Seishi</creatorcontrib><creatorcontrib>Shimizu, Atsushi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bandoh, Yukihiro</au><au>Takamura, Seishi</au><au>Shimizu, Atsushi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Complexity Reduction of Multi-Level DP Quantization Through Inter-Level Redundancy Elimination</atitle><btitle>2019 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2019-09-01</date><risdate>2019</risdate><spage>4075</spage><epage>4079</epage><pages>4075-4079</pages><eissn>2381-8549</eissn><eisbn>9781538662496</eisbn><eisbn>1538662493</eisbn><abstract>Designing an optimum quantizer can be treated as the optimization problem of finding the quantization indices that minimize the quantization error. One solution to the optimization problem, DP quantization, is based on dynamic programming. Some applications, such as bit-depth scalable codec and tone mapping, require the construction of multiple quantizers with different quantization levels, for example, from 12bit/channel to 10bit/channel and 8bit/channel. Unfortunately, conventional DP quantization optimizes the quantizer for just one quantization level. That is, it is unable to simultaneously optimize multiple quantizers. Therefore, when DP quantization is used to design multiple quantizers, there are many redundant computations in the optimization process. This paper proposes an extended DP quantization with a complexity reduction algorithm for the optimal design of multiple quantizers. Experiments show that the proposed algorithm reduces complexity by 20.3%, on average, compared to conventional DP quantization.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2019.8803433</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2381-8549
ispartof 2019 IEEE International Conference on Image Processing (ICIP), 2019, p.4075-4079
issn 2381-8549
language eng
recordid cdi_ieee_primary_8803433
source IEEE Xplore All Conference Series
subjects bit-depth scalability
Complexity theory
Dynamic programming
Heuristic algorithms
Histograms
Indexes
multi-layered structure
Optimization
quantization
Quantization (signal)
title Complexity Reduction of Multi-Level DP Quantization Through Inter-Level Redundancy Elimination
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Complexity%20Reduction%20of%20Multi-Level%20DP%20Quantization%20Through%20Inter-Level%20Redundancy%20Elimination&rft.btitle=2019%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Bandoh,%20Yukihiro&rft.date=2019-09-01&rft.spage=4075&rft.epage=4079&rft.pages=4075-4079&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP.2019.8803433&rft.eisbn=9781538662496&rft.eisbn_list=1538662493&rft_dat=%3Cieee_CHZPO%3E8803433%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i269t-f97f94a5672ccbd41db87fb1dc9e5e59fb27d602a688f2319fba261dd126fddf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8803433&rfr_iscdi=true