Loading…

A Learning-Based Prediction Model for Baby Accidents

According to the statistics in the United Kingdom, more than two million babies and toddlers experienced accidents every year. Despite the places where accidents happened, most of the accidents could've been predicted and prevented. In order to avoid causing injuries by accident, a temporal-pyr...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Peng-Jie, Lien, Shao-Fu, Lee, Ming-Sui
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 633
container_issue
container_start_page 629
container_title
container_volume
creator Wang, Peng-Jie
Lien, Shao-Fu
Lee, Ming-Sui
description According to the statistics in the United Kingdom, more than two million babies and toddlers experienced accidents every year. Despite the places where accidents happened, most of the accidents could've been predicted and prevented. In order to avoid causing injuries by accident, a temporal-pyramid long short-term memory (TP-LSTM) network along with the temporal attention mechanism is proposed to predict whether an accident will happen in the future or not. The proposed network is capable of capturing important information of the video at different temporal resolution and selecting crucial frames that contribute to the accident most. Moreover, the proposed early exponential loss (EEL) function is incorporated to achieve better prediction. The baby video dataset (BVD) containing 670 videos is collected from several video-sharing websites. 320 of which are with accidents and the others are without accidents. The experimental results show that the proposed network attains average precision of 61.13% and the accidents are foreseen 4.196 seconds before the occurrence with 80% recall.
doi_str_mv 10.1109/ICIP.2019.8803820
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8803820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8803820</ieee_id><sourcerecordid>8803820</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-303dd63bdbf7cbca9d019fad6ace4cf4194da62e9840ebdd68bb3c1c61ecca953</originalsourceid><addsrcrecordid>eNotz01OwzAUBGCDhEQpPQBi4ws42H6Oay_TCEqkILqAdeWfF2RUEmRn09sTia5m82k0Q8iD4JUQ3D51bXeoJBe2MoaDkfyKbOzWiBqM1lJZfU1WEoxgplb2ltyV8s354kGsiGpojy6PafxiO1cw0kPGmMKcppG-TRFPdJgy3Tl_pk0IKeI4l3tyM7hTwc0l1-Tz5fmjfWX9-75rm54lyWFmwCFGDT76YRt8cDYuGwcXtQuowqCEVdFpidYojn6hxnsIImiBYdE1rMnjf29CxONvTj8un4-Xk_AHrVJFxg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Learning-Based Prediction Model for Baby Accidents</title><source>IEEE Xplore All Conference Series</source><creator>Wang, Peng-Jie ; Lien, Shao-Fu ; Lee, Ming-Sui</creator><creatorcontrib>Wang, Peng-Jie ; Lien, Shao-Fu ; Lee, Ming-Sui</creatorcontrib><description>According to the statistics in the United Kingdom, more than two million babies and toddlers experienced accidents every year. Despite the places where accidents happened, most of the accidents could've been predicted and prevented. In order to avoid causing injuries by accident, a temporal-pyramid long short-term memory (TP-LSTM) network along with the temporal attention mechanism is proposed to predict whether an accident will happen in the future or not. The proposed network is capable of capturing important information of the video at different temporal resolution and selecting crucial frames that contribute to the accident most. Moreover, the proposed early exponential loss (EEL) function is incorporated to achieve better prediction. The baby video dataset (BVD) containing 670 videos is collected from several video-sharing websites. 320 of which are with accidents and the others are without accidents. The experimental results show that the proposed network attains average precision of 61.13% and the accidents are foreseen 4.196 seconds before the occurrence with 80% recall.</description><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781538662496</identifier><identifier>EISBN: 1538662493</identifier><identifier>DOI: 10.1109/ICIP.2019.8803820</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accidents ; Computational modeling ; Feature extraction ; Injuries ; Pediatrics ; Predictive models ; Surveillance</subject><ispartof>2019 IEEE International Conference on Image Processing (ICIP), 2019, p.629-633</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8803820$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8803820$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Peng-Jie</creatorcontrib><creatorcontrib>Lien, Shao-Fu</creatorcontrib><creatorcontrib>Lee, Ming-Sui</creatorcontrib><title>A Learning-Based Prediction Model for Baby Accidents</title><title>2019 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>According to the statistics in the United Kingdom, more than two million babies and toddlers experienced accidents every year. Despite the places where accidents happened, most of the accidents could've been predicted and prevented. In order to avoid causing injuries by accident, a temporal-pyramid long short-term memory (TP-LSTM) network along with the temporal attention mechanism is proposed to predict whether an accident will happen in the future or not. The proposed network is capable of capturing important information of the video at different temporal resolution and selecting crucial frames that contribute to the accident most. Moreover, the proposed early exponential loss (EEL) function is incorporated to achieve better prediction. The baby video dataset (BVD) containing 670 videos is collected from several video-sharing websites. 320 of which are with accidents and the others are without accidents. The experimental results show that the proposed network attains average precision of 61.13% and the accidents are foreseen 4.196 seconds before the occurrence with 80% recall.</description><subject>Accidents</subject><subject>Computational modeling</subject><subject>Feature extraction</subject><subject>Injuries</subject><subject>Pediatrics</subject><subject>Predictive models</subject><subject>Surveillance</subject><issn>2381-8549</issn><isbn>9781538662496</isbn><isbn>1538662493</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotz01OwzAUBGCDhEQpPQBi4ws42H6Oay_TCEqkILqAdeWfF2RUEmRn09sTia5m82k0Q8iD4JUQ3D51bXeoJBe2MoaDkfyKbOzWiBqM1lJZfU1WEoxgplb2ltyV8s354kGsiGpojy6PafxiO1cw0kPGmMKcppG-TRFPdJgy3Tl_pk0IKeI4l3tyM7hTwc0l1-Tz5fmjfWX9-75rm54lyWFmwCFGDT76YRt8cDYuGwcXtQuowqCEVdFpidYojn6hxnsIImiBYdE1rMnjf29CxONvTj8un4-Xk_AHrVJFxg</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Wang, Peng-Jie</creator><creator>Lien, Shao-Fu</creator><creator>Lee, Ming-Sui</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201909</creationdate><title>A Learning-Based Prediction Model for Baby Accidents</title><author>Wang, Peng-Jie ; Lien, Shao-Fu ; Lee, Ming-Sui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-303dd63bdbf7cbca9d019fad6ace4cf4194da62e9840ebdd68bb3c1c61ecca953</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accidents</topic><topic>Computational modeling</topic><topic>Feature extraction</topic><topic>Injuries</topic><topic>Pediatrics</topic><topic>Predictive models</topic><topic>Surveillance</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Peng-Jie</creatorcontrib><creatorcontrib>Lien, Shao-Fu</creatorcontrib><creatorcontrib>Lee, Ming-Sui</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Peng-Jie</au><au>Lien, Shao-Fu</au><au>Lee, Ming-Sui</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Learning-Based Prediction Model for Baby Accidents</atitle><btitle>2019 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2019-09</date><risdate>2019</risdate><spage>629</spage><epage>633</epage><pages>629-633</pages><eissn>2381-8549</eissn><eisbn>9781538662496</eisbn><eisbn>1538662493</eisbn><abstract>According to the statistics in the United Kingdom, more than two million babies and toddlers experienced accidents every year. Despite the places where accidents happened, most of the accidents could've been predicted and prevented. In order to avoid causing injuries by accident, a temporal-pyramid long short-term memory (TP-LSTM) network along with the temporal attention mechanism is proposed to predict whether an accident will happen in the future or not. The proposed network is capable of capturing important information of the video at different temporal resolution and selecting crucial frames that contribute to the accident most. Moreover, the proposed early exponential loss (EEL) function is incorporated to achieve better prediction. The baby video dataset (BVD) containing 670 videos is collected from several video-sharing websites. 320 of which are with accidents and the others are without accidents. The experimental results show that the proposed network attains average precision of 61.13% and the accidents are foreseen 4.196 seconds before the occurrence with 80% recall.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2019.8803820</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2381-8549
ispartof 2019 IEEE International Conference on Image Processing (ICIP), 2019, p.629-633
issn 2381-8549
language eng
recordid cdi_ieee_primary_8803820
source IEEE Xplore All Conference Series
subjects Accidents
Computational modeling
Feature extraction
Injuries
Pediatrics
Predictive models
Surveillance
title A Learning-Based Prediction Model for Baby Accidents
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Learning-Based%20Prediction%20Model%20for%20Baby%20Accidents&rft.btitle=2019%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Wang,%20Peng-Jie&rft.date=2019-09&rft.spage=629&rft.epage=633&rft.pages=629-633&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP.2019.8803820&rft.eisbn=9781538662496&rft.eisbn_list=1538662493&rft_dat=%3Cieee_CHZPO%3E8803820%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-303dd63bdbf7cbca9d019fad6ace4cf4194da62e9840ebdd68bb3c1c61ecca953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8803820&rfr_iscdi=true