Loading…
A Learning-Based Prediction Model for Baby Accidents
According to the statistics in the United Kingdom, more than two million babies and toddlers experienced accidents every year. Despite the places where accidents happened, most of the accidents could've been predicted and prevented. In order to avoid causing injuries by accident, a temporal-pyr...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 633 |
container_issue | |
container_start_page | 629 |
container_title | |
container_volume | |
creator | Wang, Peng-Jie Lien, Shao-Fu Lee, Ming-Sui |
description | According to the statistics in the United Kingdom, more than two million babies and toddlers experienced accidents every year. Despite the places where accidents happened, most of the accidents could've been predicted and prevented. In order to avoid causing injuries by accident, a temporal-pyramid long short-term memory (TP-LSTM) network along with the temporal attention mechanism is proposed to predict whether an accident will happen in the future or not. The proposed network is capable of capturing important information of the video at different temporal resolution and selecting crucial frames that contribute to the accident most. Moreover, the proposed early exponential loss (EEL) function is incorporated to achieve better prediction. The baby video dataset (BVD) containing 670 videos is collected from several video-sharing websites. 320 of which are with accidents and the others are without accidents. The experimental results show that the proposed network attains average precision of 61.13% and the accidents are foreseen 4.196 seconds before the occurrence with 80% recall. |
doi_str_mv | 10.1109/ICIP.2019.8803820 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8803820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8803820</ieee_id><sourcerecordid>8803820</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-303dd63bdbf7cbca9d019fad6ace4cf4194da62e9840ebdd68bb3c1c61ecca953</originalsourceid><addsrcrecordid>eNotz01OwzAUBGCDhEQpPQBi4ws42H6Oay_TCEqkILqAdeWfF2RUEmRn09sTia5m82k0Q8iD4JUQ3D51bXeoJBe2MoaDkfyKbOzWiBqM1lJZfU1WEoxgplb2ltyV8s354kGsiGpojy6PafxiO1cw0kPGmMKcppG-TRFPdJgy3Tl_pk0IKeI4l3tyM7hTwc0l1-Tz5fmjfWX9-75rm54lyWFmwCFGDT76YRt8cDYuGwcXtQuowqCEVdFpidYojn6hxnsIImiBYdE1rMnjf29CxONvTj8un4-Xk_AHrVJFxg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Learning-Based Prediction Model for Baby Accidents</title><source>IEEE Xplore All Conference Series</source><creator>Wang, Peng-Jie ; Lien, Shao-Fu ; Lee, Ming-Sui</creator><creatorcontrib>Wang, Peng-Jie ; Lien, Shao-Fu ; Lee, Ming-Sui</creatorcontrib><description>According to the statistics in the United Kingdom, more than two million babies and toddlers experienced accidents every year. Despite the places where accidents happened, most of the accidents could've been predicted and prevented. In order to avoid causing injuries by accident, a temporal-pyramid long short-term memory (TP-LSTM) network along with the temporal attention mechanism is proposed to predict whether an accident will happen in the future or not. The proposed network is capable of capturing important information of the video at different temporal resolution and selecting crucial frames that contribute to the accident most. Moreover, the proposed early exponential loss (EEL) function is incorporated to achieve better prediction. The baby video dataset (BVD) containing 670 videos is collected from several video-sharing websites. 320 of which are with accidents and the others are without accidents. The experimental results show that the proposed network attains average precision of 61.13% and the accidents are foreseen 4.196 seconds before the occurrence with 80% recall.</description><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781538662496</identifier><identifier>EISBN: 1538662493</identifier><identifier>DOI: 10.1109/ICIP.2019.8803820</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accidents ; Computational modeling ; Feature extraction ; Injuries ; Pediatrics ; Predictive models ; Surveillance</subject><ispartof>2019 IEEE International Conference on Image Processing (ICIP), 2019, p.629-633</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8803820$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8803820$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Peng-Jie</creatorcontrib><creatorcontrib>Lien, Shao-Fu</creatorcontrib><creatorcontrib>Lee, Ming-Sui</creatorcontrib><title>A Learning-Based Prediction Model for Baby Accidents</title><title>2019 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>According to the statistics in the United Kingdom, more than two million babies and toddlers experienced accidents every year. Despite the places where accidents happened, most of the accidents could've been predicted and prevented. In order to avoid causing injuries by accident, a temporal-pyramid long short-term memory (TP-LSTM) network along with the temporal attention mechanism is proposed to predict whether an accident will happen in the future or not. The proposed network is capable of capturing important information of the video at different temporal resolution and selecting crucial frames that contribute to the accident most. Moreover, the proposed early exponential loss (EEL) function is incorporated to achieve better prediction. The baby video dataset (BVD) containing 670 videos is collected from several video-sharing websites. 320 of which are with accidents and the others are without accidents. The experimental results show that the proposed network attains average precision of 61.13% and the accidents are foreseen 4.196 seconds before the occurrence with 80% recall.</description><subject>Accidents</subject><subject>Computational modeling</subject><subject>Feature extraction</subject><subject>Injuries</subject><subject>Pediatrics</subject><subject>Predictive models</subject><subject>Surveillance</subject><issn>2381-8549</issn><isbn>9781538662496</isbn><isbn>1538662493</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotz01OwzAUBGCDhEQpPQBi4ws42H6Oay_TCEqkILqAdeWfF2RUEmRn09sTia5m82k0Q8iD4JUQ3D51bXeoJBe2MoaDkfyKbOzWiBqM1lJZfU1WEoxgplb2ltyV8s354kGsiGpojy6PafxiO1cw0kPGmMKcppG-TRFPdJgy3Tl_pk0IKeI4l3tyM7hTwc0l1-Tz5fmjfWX9-75rm54lyWFmwCFGDT76YRt8cDYuGwcXtQuowqCEVdFpidYojn6hxnsIImiBYdE1rMnjf29CxONvTj8un4-Xk_AHrVJFxg</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Wang, Peng-Jie</creator><creator>Lien, Shao-Fu</creator><creator>Lee, Ming-Sui</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201909</creationdate><title>A Learning-Based Prediction Model for Baby Accidents</title><author>Wang, Peng-Jie ; Lien, Shao-Fu ; Lee, Ming-Sui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-303dd63bdbf7cbca9d019fad6ace4cf4194da62e9840ebdd68bb3c1c61ecca953</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accidents</topic><topic>Computational modeling</topic><topic>Feature extraction</topic><topic>Injuries</topic><topic>Pediatrics</topic><topic>Predictive models</topic><topic>Surveillance</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Peng-Jie</creatorcontrib><creatorcontrib>Lien, Shao-Fu</creatorcontrib><creatorcontrib>Lee, Ming-Sui</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Peng-Jie</au><au>Lien, Shao-Fu</au><au>Lee, Ming-Sui</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Learning-Based Prediction Model for Baby Accidents</atitle><btitle>2019 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2019-09</date><risdate>2019</risdate><spage>629</spage><epage>633</epage><pages>629-633</pages><eissn>2381-8549</eissn><eisbn>9781538662496</eisbn><eisbn>1538662493</eisbn><abstract>According to the statistics in the United Kingdom, more than two million babies and toddlers experienced accidents every year. Despite the places where accidents happened, most of the accidents could've been predicted and prevented. In order to avoid causing injuries by accident, a temporal-pyramid long short-term memory (TP-LSTM) network along with the temporal attention mechanism is proposed to predict whether an accident will happen in the future or not. The proposed network is capable of capturing important information of the video at different temporal resolution and selecting crucial frames that contribute to the accident most. Moreover, the proposed early exponential loss (EEL) function is incorporated to achieve better prediction. The baby video dataset (BVD) containing 670 videos is collected from several video-sharing websites. 320 of which are with accidents and the others are without accidents. The experimental results show that the proposed network attains average precision of 61.13% and the accidents are foreseen 4.196 seconds before the occurrence with 80% recall.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2019.8803820</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2381-8549 |
ispartof | 2019 IEEE International Conference on Image Processing (ICIP), 2019, p.629-633 |
issn | 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_8803820 |
source | IEEE Xplore All Conference Series |
subjects | Accidents Computational modeling Feature extraction Injuries Pediatrics Predictive models Surveillance |
title | A Learning-Based Prediction Model for Baby Accidents |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Learning-Based%20Prediction%20Model%20for%20Baby%20Accidents&rft.btitle=2019%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Wang,%20Peng-Jie&rft.date=2019-09&rft.spage=629&rft.epage=633&rft.pages=629-633&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP.2019.8803820&rft.eisbn=9781538662496&rft.eisbn_list=1538662493&rft_dat=%3Cieee_CHZPO%3E8803820%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-303dd63bdbf7cbca9d019fad6ace4cf4194da62e9840ebdd68bb3c1c61ecca953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8803820&rfr_iscdi=true |