Loading…
Optimization of PID Controller Gain Using Evolutionary Algorithm and Swarm Intelligence
Design of the Proportional-Integral-Derivative (PID) controller for an industrial process represents a challenge due to process complexity and non-linearity. Traditional methods such as Ziegler-Nichols (ZN) for PID controller tuning do not provide an optimal gain; thus, might leave the system with p...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Design of the Proportional-Integral-Derivative (PID) controller for an industrial process represents a challenge due to process complexity and non-linearity. Traditional methods such as Ziegler-Nichols (ZN) for PID controller tuning do not provide an optimal gain; thus, might leave the system with potential instability condition and cause significant losses and damages to the system. This paper investigates the merits of evolutionary and swarm-based optimization algorithms in fine-tuning the parameters of a PID controller. Here, Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) algorithm were utilized to optimize the PID controller for a DC motor system. Various fitness functions were provided for the presented algorithms to compute the performance of the controller. A new fitness function was proposed to achieve an outstanding control response for the DC motor system. Results demonstrate the efficacy of the proposed methods in improving closed loop system response. |
---|---|
ISSN: | 2573-3346 |
DOI: | 10.1109/IACS.2019.8809144 |