Loading…

A computing platform and its tools for features extraction from on-vehicle image sequences

In the framework of the project CASSICE on the automatic classification of driving situations, the vehicle inherent dynamic parameters and the various external signals are analyzed in order to characterize the driver behavior. The objective of this project is to develop adequate tools able to genera...

Full description

Saved in:
Bibliographic Details
Main Authors: Shawky, M., Bonnet, S., Favard, S., Crubille, P.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 45
container_issue
container_start_page 39
container_title
container_volume
creator Shawky, M.
Bonnet, S.
Favard, S.
Crubille, P.
description In the framework of the project CASSICE on the automatic classification of driving situations, the vehicle inherent dynamic parameters and the various external signals are analyzed in order to characterize the driver behavior. The objective of this project is to develop adequate tools able to generate a time-stamped database of real situations that will be used by psychologists. The driving data may be branded in several layers, starting with the lowest-level data coming form the vehicle physical sensors, which pass through many extractions phases in order to obtain structured, classifiable driving situations. The high-level data comprise information like the position of the vehicle on the road, to characterization of the road. They also include information on the other users of the road (vehicles, trucks, motorbikes, pedestrians, etc.), their characterization and their situation (relative position and speed, used lane, etc.).
doi_str_mv 10.1109/ITSC.2000.881015
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_881015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>881015</ieee_id><sourcerecordid>881015</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-a6bdf30b28f0856ef4c72b1172e4f59b5b1e0d22756d167b767d0cab1dda489b3</originalsourceid><addsrcrecordid>eNotkE9LxDAUxAMiKGvv4ilfoPW9tmna41L8s7DgwfXiZUmalzXSNrVJRb-9hRUGBuYHwzCM3SJkiNDc7w6vbZYDQFbXCCguWNLIGlYVopEIVywJ4XPlUDSiQHHN3re888O0RDee-NSraP08cDUa7mLg0fs-8DXillRcZgqcfuKsuuj8yO3sB-7H9Js-XNcTd4M6EQ_0tdDYUbhhl1b1gZJ_37C3x4dD-5zuX5527XafOoQypqrSxhag89pCLSqyZSdzjShzKq1otNBIYPJcispgJbWspIFOaTRGlXWjiw27O_c6IjpO8zpj_j2eDyj-AIITUjY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A computing platform and its tools for features extraction from on-vehicle image sequences</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shawky, M. ; Bonnet, S. ; Favard, S. ; Crubille, P.</creator><creatorcontrib>Shawky, M. ; Bonnet, S. ; Favard, S. ; Crubille, P.</creatorcontrib><description>In the framework of the project CASSICE on the automatic classification of driving situations, the vehicle inherent dynamic parameters and the various external signals are analyzed in order to characterize the driver behavior. The objective of this project is to develop adequate tools able to generate a time-stamped database of real situations that will be used by psychologists. The driving data may be branded in several layers, starting with the lowest-level data coming form the vehicle physical sensors, which pass through many extractions phases in order to obtain structured, classifiable driving situations. The high-level data comprise information like the position of the vehicle on the road, to characterization of the road. They also include information on the other users of the road (vehicles, trucks, motorbikes, pedestrians, etc.), their characterization and their situation (relative position and speed, used lane, etc.).</description><identifier>ISBN: 9780780359710</identifier><identifier>ISBN: 0780359712</identifier><identifier>DOI: 10.1109/ITSC.2000.881015</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Feature extraction ; Motorcycles ; Psychology ; Road vehicles ; Sensor phenomena and characterization ; Signal analysis ; Vehicle driving ; Vehicle dynamics</subject><ispartof>ITSC2000. 2000 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.00TH8493), 2000, p.39-45</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/881015$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/881015$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shawky, M.</creatorcontrib><creatorcontrib>Bonnet, S.</creatorcontrib><creatorcontrib>Favard, S.</creatorcontrib><creatorcontrib>Crubille, P.</creatorcontrib><title>A computing platform and its tools for features extraction from on-vehicle image sequences</title><title>ITSC2000. 2000 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.00TH8493)</title><addtitle>ITSC</addtitle><description>In the framework of the project CASSICE on the automatic classification of driving situations, the vehicle inherent dynamic parameters and the various external signals are analyzed in order to characterize the driver behavior. The objective of this project is to develop adequate tools able to generate a time-stamped database of real situations that will be used by psychologists. The driving data may be branded in several layers, starting with the lowest-level data coming form the vehicle physical sensors, which pass through many extractions phases in order to obtain structured, classifiable driving situations. The high-level data comprise information like the position of the vehicle on the road, to characterization of the road. They also include information on the other users of the road (vehicles, trucks, motorbikes, pedestrians, etc.), their characterization and their situation (relative position and speed, used lane, etc.).</description><subject>Data mining</subject><subject>Feature extraction</subject><subject>Motorcycles</subject><subject>Psychology</subject><subject>Road vehicles</subject><subject>Sensor phenomena and characterization</subject><subject>Signal analysis</subject><subject>Vehicle driving</subject><subject>Vehicle dynamics</subject><isbn>9780780359710</isbn><isbn>0780359712</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE9LxDAUxAMiKGvv4ilfoPW9tmna41L8s7DgwfXiZUmalzXSNrVJRb-9hRUGBuYHwzCM3SJkiNDc7w6vbZYDQFbXCCguWNLIGlYVopEIVywJ4XPlUDSiQHHN3re888O0RDee-NSraP08cDUa7mLg0fs-8DXillRcZgqcfuKsuuj8yO3sB-7H9Js-XNcTd4M6EQ_0tdDYUbhhl1b1gZJ_37C3x4dD-5zuX5527XafOoQypqrSxhag89pCLSqyZSdzjShzKq1otNBIYPJcispgJbWspIFOaTRGlXWjiw27O_c6IjpO8zpj_j2eDyj-AIITUjY</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Shawky, M.</creator><creator>Bonnet, S.</creator><creator>Favard, S.</creator><creator>Crubille, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>A computing platform and its tools for features extraction from on-vehicle image sequences</title><author>Shawky, M. ; Bonnet, S. ; Favard, S. ; Crubille, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-a6bdf30b28f0856ef4c72b1172e4f59b5b1e0d22756d167b767d0cab1dda489b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Data mining</topic><topic>Feature extraction</topic><topic>Motorcycles</topic><topic>Psychology</topic><topic>Road vehicles</topic><topic>Sensor phenomena and characterization</topic><topic>Signal analysis</topic><topic>Vehicle driving</topic><topic>Vehicle dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Shawky, M.</creatorcontrib><creatorcontrib>Bonnet, S.</creatorcontrib><creatorcontrib>Favard, S.</creatorcontrib><creatorcontrib>Crubille, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shawky, M.</au><au>Bonnet, S.</au><au>Favard, S.</au><au>Crubille, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A computing platform and its tools for features extraction from on-vehicle image sequences</atitle><btitle>ITSC2000. 2000 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.00TH8493)</btitle><stitle>ITSC</stitle><date>2000</date><risdate>2000</risdate><spage>39</spage><epage>45</epage><pages>39-45</pages><isbn>9780780359710</isbn><isbn>0780359712</isbn><abstract>In the framework of the project CASSICE on the automatic classification of driving situations, the vehicle inherent dynamic parameters and the various external signals are analyzed in order to characterize the driver behavior. The objective of this project is to develop adequate tools able to generate a time-stamped database of real situations that will be used by psychologists. The driving data may be branded in several layers, starting with the lowest-level data coming form the vehicle physical sensors, which pass through many extractions phases in order to obtain structured, classifiable driving situations. The high-level data comprise information like the position of the vehicle on the road, to characterization of the road. They also include information on the other users of the road (vehicles, trucks, motorbikes, pedestrians, etc.), their characterization and their situation (relative position and speed, used lane, etc.).</abstract><pub>IEEE</pub><doi>10.1109/ITSC.2000.881015</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780359710
ispartof ITSC2000. 2000 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.00TH8493), 2000, p.39-45
issn
language eng
recordid cdi_ieee_primary_881015
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data mining
Feature extraction
Motorcycles
Psychology
Road vehicles
Sensor phenomena and characterization
Signal analysis
Vehicle driving
Vehicle dynamics
title A computing platform and its tools for features extraction from on-vehicle image sequences
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20computing%20platform%20and%20its%20tools%20for%20features%20extraction%20from%20on-vehicle%20image%20sequences&rft.btitle=ITSC2000.%202000%20IEEE%20Intelligent%20Transportation%20Systems.%20Proceedings%20(Cat.%20No.00TH8493)&rft.au=Shawky,%20M.&rft.date=2000&rft.spage=39&rft.epage=45&rft.pages=39-45&rft.isbn=9780780359710&rft.isbn_list=0780359712&rft_id=info:doi/10.1109/ITSC.2000.881015&rft_dat=%3Cieee_6IE%3E881015%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-a6bdf30b28f0856ef4c72b1172e4f59b5b1e0d22756d167b767d0cab1dda489b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=881015&rfr_iscdi=true