Loading…

Decentralized Nonlinear Adaptive Optimal Control Scheme for Enhancement of Power System Stability

An adaptive decentralized control scheme is proposed for real-time control of oscillatory dynamics and overall stability improvement of an interconnected power system. A standard framework of continuous-time (CT) infinite-horizon optimal control paradigm is defined and an extended online actor-criti...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2020-03, Vol.35 (2), p.1400-1410
Main Authors: Mir, Abdul Saleem, Bhasin, Shubhendu, Senroy, Nilanjan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An adaptive decentralized control scheme is proposed for real-time control of oscillatory dynamics and overall stability improvement of an interconnected power system. A standard framework of continuous-time (CT) infinite-horizon optimal control paradigm is defined and an extended online actor-critic (AC) algorithm based on policy iteration is used for its solution. The AC structure uses neural networks (NNs) whose weights are updated adaptively. The proof for the convergence of the scheme guarantees the system stability. The unobservable internal states of the synchronous machine are estimated using a numerically stable, swift and relatively accurate decentralized dynamic state estimator (DDSE) based on spherical-radial cubature rule. Applicability of the developed scheme has been demonstrated on a benchmark power system (IEEE 2.2, 16 machine 68 bus system) model via nonlinear time-domain simulations. Multi-processor technology based scaled laboratory setup was used for controller performance validation in real-time.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2019.2939394