Loading…

Optimization of the reconstruction algorithm in triple-GEM detector

Gas detectors are very light instruments used in high energy physics to measure the particle properties: position and momentum. Gas Electron Multiplier (GEM) technology has been invented by F. Sauli in 1997 and in the past tens of years the knowledge of this Micro Pattern Gas Detector (MPGD) increas...

Full description

Saved in:
Bibliographic Details
Main Authors: Cossio, F., Alexeev, M., Amoroso, A., Ferroli, R. Baldini, Balossino, I., Bertani, M., Bettoni, D., Bianchi, F., Bortone, A., Calcaterra, A., Canale, N., Capodiferro, M., Cassariti, V., Cerioni, S., Chai, J., Cheng, W., Chiozzi, S., Cibinetto, G., Ramusino, A. Cotta, Cotto, G., Mori, F. De, Destefanis, M., Dong, J., Evangelisti, F., Farinelli, R., Fava, L., Felici, G., Fioravanti, E., Garzia, I., Gatta, M., Giraudo, G., Greco, M., Lavezzi, L., Leng, C., Li, H., Maggiora, M., Malaguti, R., Mangoni, A., Marcello, S., Melchiorri, M., Mezzadri, G., Mignone, M., Morello, G., Pacetti, S., Patteri, P., Pellegrino, J., Pelosi, A., Rivetti, A., Rocha Rolo, M. Da, Savrie, M., Soldani, E., Sosio, S., Spataro, S., Tskhadadze, E., Verma, S., Wheadon, R., Yan, L., Yuan, W.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Cossio, F.
Alexeev, M.
Amoroso, A.
Ferroli, R. Baldini
Balossino, I.
Bertani, M.
Bettoni, D.
Bianchi, F.
Bortone, A.
Calcaterra, A.
Canale, N.
Capodiferro, M.
Cassariti, V.
Cerioni, S.
Chai, J.
Cheng, W.
Chiozzi, S.
Cibinetto, G.
Ramusino, A. Cotta
Cotto, G.
Mori, F. De
Destefanis, M.
Dong, J.
Evangelisti, F.
Farinelli, R.
Fava, L.
Felici, G.
Fioravanti, E.
Garzia, I.
Gatta, M.
Giraudo, G.
Greco, M.
Lavezzi, L.
Leng, C.
Li, H.
Maggiora, M.
Malaguti, R.
Mangoni, A.
Marcello, S.
Melchiorri, M.
Mezzadri, G.
Mignone, M.
Morello, G.
Pacetti, S.
Patteri, P.
Pellegrino, J.
Pelosi, A.
Rivetti, A.
Rocha Rolo, M. Da
Savrie, M.
Soldani, E.
Sosio, S.
Spataro, S.
Tskhadadze, E.
Verma, S.
Wheadon, R.
Yan, L.
Yuan, W.
description Gas detectors are very light instruments used in high energy physics to measure the particle properties: position and momentum. Gas Electron Multiplier (GEM) technology has been invented by F. Sauli in 1997 and in the past tens of years the knowledge of this Micro Pattern Gas Detector (MPGD) increased. A design with a triple-GEM has been used in several experiments in high energy physics such as TOTEM and COMPASS. This technology allows to achieve good spatial resolution performances and can be used to create large area detector with a shapeable surface, e.g. the KLOE2 Inner Tracker or the upcoming upgrade of the BESIII Inner Tracker. A triple-GEM uses three stages of GEMs, with high electric field, to amplify the number of the electrons produced by the primary ionization of the charged particle passing in the gas, with a total gain of about 10 4 . The signal is then collected on a segmented anode and dedicated algorithms are used to reconstruct the charged particle position. The measurement of both the time and the charge information on the anode strip allows to use two algorithms: the Charge Centroid and the micro-Time Projection Chamber readout. The CC is strongly performing with orthogonal tracks while the µTPC gives its best results if magnetic field or if non-orthogonal tracks are present. These reconstruction methods are anti-correlated and the combination of the two is needed to keep the spatial resolution stable between the regions with different performances. A beam test with planar triple-GEM has been performed and in this presentation the merging algorithm of the CC and µTPC as a function of the charge and the multiplicity of the signal will be shown: a stable spatial resolution of about 130 µm has been achieved. In addition to this, the impact of the transversal and longitudinal diffusions on the reconstruction in µTPC mode will be shown, as well as the inter-strip capacitance effect.
doi_str_mv 10.1109/NSSMIC.2018.8824331
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8824331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8824331</ieee_id><sourcerecordid>8824331</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ba7bac88898ec2e56ea183a81fd1afde00ccf4635aaa077a27f74b60a808c5493</originalsourceid><addsrcrecordid>eNotj8tOAjEUQKuJiYh8AZv5gcHbx0xvl2aCSMJjAXtyp3MrNcCQTl3o15soq5OcxUmOEFMJMynBvWx2u_WymSmQOENURmt5JybOoqw01micwXsxUpW1JaByj-JpGD4BFGhjRqLZXnM8xx_Ksb8UfSjykYvEvr8MOX35P0unjz7FfDwX8VLkFK8nLhfzddFxZp_79CweAp0Gntw4Fvu3-b55L1fbxbJ5XZXRQS5bsi15RHTIXnFVM0nUhDJ0kkLHAN4HU-uKiMBaUjZY09ZACOgr4_RYTP-zkZkP1xTPlL4Pt2X9C_l9TEI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimization of the reconstruction algorithm in triple-GEM detector</title><source>IEEE Xplore All Conference Series</source><creator>Cossio, F. ; Alexeev, M. ; Amoroso, A. ; Ferroli, R. Baldini ; Balossino, I. ; Bertani, M. ; Bettoni, D. ; Bianchi, F. ; Bortone, A. ; Calcaterra, A. ; Canale, N. ; Capodiferro, M. ; Cassariti, V. ; Cerioni, S. ; Chai, J. ; Cheng, W. ; Chiozzi, S. ; Cibinetto, G. ; Ramusino, A. Cotta ; Cotto, G. ; Mori, F. De ; Destefanis, M. ; Dong, J. ; Evangelisti, F. ; Farinelli, R. ; Fava, L. ; Felici, G. ; Fioravanti, E. ; Garzia, I. ; Gatta, M. ; Giraudo, G. ; Greco, M. ; Lavezzi, L. ; Leng, C. ; Li, H. ; Maggiora, M. ; Malaguti, R. ; Mangoni, A. ; Marcello, S. ; Melchiorri, M. ; Mezzadri, G. ; Mignone, M. ; Morello, G. ; Pacetti, S. ; Patteri, P. ; Pellegrino, J. ; Pelosi, A. ; Rivetti, A. ; Rocha Rolo, M. Da ; Savrie, M. ; Soldani, E. ; Sosio, S. ; Spataro, S. ; Tskhadadze, E. ; Verma, S. ; Wheadon, R. ; Yan, L. ; Yuan, W.</creator><creatorcontrib>Cossio, F. ; Alexeev, M. ; Amoroso, A. ; Ferroli, R. Baldini ; Balossino, I. ; Bertani, M. ; Bettoni, D. ; Bianchi, F. ; Bortone, A. ; Calcaterra, A. ; Canale, N. ; Capodiferro, M. ; Cassariti, V. ; Cerioni, S. ; Chai, J. ; Cheng, W. ; Chiozzi, S. ; Cibinetto, G. ; Ramusino, A. Cotta ; Cotto, G. ; Mori, F. De ; Destefanis, M. ; Dong, J. ; Evangelisti, F. ; Farinelli, R. ; Fava, L. ; Felici, G. ; Fioravanti, E. ; Garzia, I. ; Gatta, M. ; Giraudo, G. ; Greco, M. ; Lavezzi, L. ; Leng, C. ; Li, H. ; Maggiora, M. ; Malaguti, R. ; Mangoni, A. ; Marcello, S. ; Melchiorri, M. ; Mezzadri, G. ; Mignone, M. ; Morello, G. ; Pacetti, S. ; Patteri, P. ; Pellegrino, J. ; Pelosi, A. ; Rivetti, A. ; Rocha Rolo, M. Da ; Savrie, M. ; Soldani, E. ; Sosio, S. ; Spataro, S. ; Tskhadadze, E. ; Verma, S. ; Wheadon, R. ; Yan, L. ; Yuan, W.</creatorcontrib><description>Gas detectors are very light instruments used in high energy physics to measure the particle properties: position and momentum. Gas Electron Multiplier (GEM) technology has been invented by F. Sauli in 1997 and in the past tens of years the knowledge of this Micro Pattern Gas Detector (MPGD) increased. A design with a triple-GEM has been used in several experiments in high energy physics such as TOTEM and COMPASS. This technology allows to achieve good spatial resolution performances and can be used to create large area detector with a shapeable surface, e.g. the KLOE2 Inner Tracker or the upcoming upgrade of the BESIII Inner Tracker. A triple-GEM uses three stages of GEMs, with high electric field, to amplify the number of the electrons produced by the primary ionization of the charged particle passing in the gas, with a total gain of about 10 4 . The signal is then collected on a segmented anode and dedicated algorithms are used to reconstruct the charged particle position. The measurement of both the time and the charge information on the anode strip allows to use two algorithms: the Charge Centroid and the micro-Time Projection Chamber readout. The CC is strongly performing with orthogonal tracks while the µTPC gives its best results if magnetic field or if non-orthogonal tracks are present. These reconstruction methods are anti-correlated and the combination of the two is needed to keep the spatial resolution stable between the regions with different performances. A beam test with planar triple-GEM has been performed and in this presentation the merging algorithm of the CC and µTPC as a function of the charge and the multiplicity of the signal will be shown: a stable spatial resolution of about 130 µm has been achieved. In addition to this, the impact of the transversal and longitudinal diffusions on the reconstruction in µTPC mode will be shown, as well as the inter-strip capacitance effect.</description><identifier>EISSN: 2577-0829</identifier><identifier>EISBN: 9781538684948</identifier><identifier>EISBN: 1538684942</identifier><identifier>DOI: 10.1109/NSSMIC.2018.8824331</identifier><language>eng</language><publisher>IEEE</publisher><subject>Anodes ; Detectors ; GEM ; High energy physics ; Merging ; Micro Pattern Gas Detectors ; Reconstruction algorithms ; Spatial resolution ; Strips ; Time measurement ; tracking detectors ; µTPC</subject><ispartof>2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), 2018, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8824331$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8824331$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cossio, F.</creatorcontrib><creatorcontrib>Alexeev, M.</creatorcontrib><creatorcontrib>Amoroso, A.</creatorcontrib><creatorcontrib>Ferroli, R. Baldini</creatorcontrib><creatorcontrib>Balossino, I.</creatorcontrib><creatorcontrib>Bertani, M.</creatorcontrib><creatorcontrib>Bettoni, D.</creatorcontrib><creatorcontrib>Bianchi, F.</creatorcontrib><creatorcontrib>Bortone, A.</creatorcontrib><creatorcontrib>Calcaterra, A.</creatorcontrib><creatorcontrib>Canale, N.</creatorcontrib><creatorcontrib>Capodiferro, M.</creatorcontrib><creatorcontrib>Cassariti, V.</creatorcontrib><creatorcontrib>Cerioni, S.</creatorcontrib><creatorcontrib>Chai, J.</creatorcontrib><creatorcontrib>Cheng, W.</creatorcontrib><creatorcontrib>Chiozzi, S.</creatorcontrib><creatorcontrib>Cibinetto, G.</creatorcontrib><creatorcontrib>Ramusino, A. Cotta</creatorcontrib><creatorcontrib>Cotto, G.</creatorcontrib><creatorcontrib>Mori, F. De</creatorcontrib><creatorcontrib>Destefanis, M.</creatorcontrib><creatorcontrib>Dong, J.</creatorcontrib><creatorcontrib>Evangelisti, F.</creatorcontrib><creatorcontrib>Farinelli, R.</creatorcontrib><creatorcontrib>Fava, L.</creatorcontrib><creatorcontrib>Felici, G.</creatorcontrib><creatorcontrib>Fioravanti, E.</creatorcontrib><creatorcontrib>Garzia, I.</creatorcontrib><creatorcontrib>Gatta, M.</creatorcontrib><creatorcontrib>Giraudo, G.</creatorcontrib><creatorcontrib>Greco, M.</creatorcontrib><creatorcontrib>Lavezzi, L.</creatorcontrib><creatorcontrib>Leng, C.</creatorcontrib><creatorcontrib>Li, H.</creatorcontrib><creatorcontrib>Maggiora, M.</creatorcontrib><creatorcontrib>Malaguti, R.</creatorcontrib><creatorcontrib>Mangoni, A.</creatorcontrib><creatorcontrib>Marcello, S.</creatorcontrib><creatorcontrib>Melchiorri, M.</creatorcontrib><creatorcontrib>Mezzadri, G.</creatorcontrib><creatorcontrib>Mignone, M.</creatorcontrib><creatorcontrib>Morello, G.</creatorcontrib><creatorcontrib>Pacetti, S.</creatorcontrib><creatorcontrib>Patteri, P.</creatorcontrib><creatorcontrib>Pellegrino, J.</creatorcontrib><creatorcontrib>Pelosi, A.</creatorcontrib><creatorcontrib>Rivetti, A.</creatorcontrib><creatorcontrib>Rocha Rolo, M. Da</creatorcontrib><creatorcontrib>Savrie, M.</creatorcontrib><creatorcontrib>Soldani, E.</creatorcontrib><creatorcontrib>Sosio, S.</creatorcontrib><creatorcontrib>Spataro, S.</creatorcontrib><creatorcontrib>Tskhadadze, E.</creatorcontrib><creatorcontrib>Verma, S.</creatorcontrib><creatorcontrib>Wheadon, R.</creatorcontrib><creatorcontrib>Yan, L.</creatorcontrib><creatorcontrib>Yuan, W.</creatorcontrib><title>Optimization of the reconstruction algorithm in triple-GEM detector</title><title>2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC)</title><addtitle>NSSMIC</addtitle><description>Gas detectors are very light instruments used in high energy physics to measure the particle properties: position and momentum. Gas Electron Multiplier (GEM) technology has been invented by F. Sauli in 1997 and in the past tens of years the knowledge of this Micro Pattern Gas Detector (MPGD) increased. A design with a triple-GEM has been used in several experiments in high energy physics such as TOTEM and COMPASS. This technology allows to achieve good spatial resolution performances and can be used to create large area detector with a shapeable surface, e.g. the KLOE2 Inner Tracker or the upcoming upgrade of the BESIII Inner Tracker. A triple-GEM uses three stages of GEMs, with high electric field, to amplify the number of the electrons produced by the primary ionization of the charged particle passing in the gas, with a total gain of about 10 4 . The signal is then collected on a segmented anode and dedicated algorithms are used to reconstruct the charged particle position. The measurement of both the time and the charge information on the anode strip allows to use two algorithms: the Charge Centroid and the micro-Time Projection Chamber readout. The CC is strongly performing with orthogonal tracks while the µTPC gives its best results if magnetic field or if non-orthogonal tracks are present. These reconstruction methods are anti-correlated and the combination of the two is needed to keep the spatial resolution stable between the regions with different performances. A beam test with planar triple-GEM has been performed and in this presentation the merging algorithm of the CC and µTPC as a function of the charge and the multiplicity of the signal will be shown: a stable spatial resolution of about 130 µm has been achieved. In addition to this, the impact of the transversal and longitudinal diffusions on the reconstruction in µTPC mode will be shown, as well as the inter-strip capacitance effect.</description><subject>Anodes</subject><subject>Detectors</subject><subject>GEM</subject><subject>High energy physics</subject><subject>Merging</subject><subject>Micro Pattern Gas Detectors</subject><subject>Reconstruction algorithms</subject><subject>Spatial resolution</subject><subject>Strips</subject><subject>Time measurement</subject><subject>tracking detectors</subject><subject>µTPC</subject><issn>2577-0829</issn><isbn>9781538684948</isbn><isbn>1538684942</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tOAjEUQKuJiYh8AZv5gcHbx0xvl2aCSMJjAXtyp3MrNcCQTl3o15soq5OcxUmOEFMJMynBvWx2u_WymSmQOENURmt5JybOoqw01micwXsxUpW1JaByj-JpGD4BFGhjRqLZXnM8xx_Ksb8UfSjykYvEvr8MOX35P0unjz7FfDwX8VLkFK8nLhfzddFxZp_79CweAp0Gntw4Fvu3-b55L1fbxbJ5XZXRQS5bsi15RHTIXnFVM0nUhDJ0kkLHAN4HU-uKiMBaUjZY09ZACOgr4_RYTP-zkZkP1xTPlL4Pt2X9C_l9TEI</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Cossio, F.</creator><creator>Alexeev, M.</creator><creator>Amoroso, A.</creator><creator>Ferroli, R. Baldini</creator><creator>Balossino, I.</creator><creator>Bertani, M.</creator><creator>Bettoni, D.</creator><creator>Bianchi, F.</creator><creator>Bortone, A.</creator><creator>Calcaterra, A.</creator><creator>Canale, N.</creator><creator>Capodiferro, M.</creator><creator>Cassariti, V.</creator><creator>Cerioni, S.</creator><creator>Chai, J.</creator><creator>Cheng, W.</creator><creator>Chiozzi, S.</creator><creator>Cibinetto, G.</creator><creator>Ramusino, A. Cotta</creator><creator>Cotto, G.</creator><creator>Mori, F. De</creator><creator>Destefanis, M.</creator><creator>Dong, J.</creator><creator>Evangelisti, F.</creator><creator>Farinelli, R.</creator><creator>Fava, L.</creator><creator>Felici, G.</creator><creator>Fioravanti, E.</creator><creator>Garzia, I.</creator><creator>Gatta, M.</creator><creator>Giraudo, G.</creator><creator>Greco, M.</creator><creator>Lavezzi, L.</creator><creator>Leng, C.</creator><creator>Li, H.</creator><creator>Maggiora, M.</creator><creator>Malaguti, R.</creator><creator>Mangoni, A.</creator><creator>Marcello, S.</creator><creator>Melchiorri, M.</creator><creator>Mezzadri, G.</creator><creator>Mignone, M.</creator><creator>Morello, G.</creator><creator>Pacetti, S.</creator><creator>Patteri, P.</creator><creator>Pellegrino, J.</creator><creator>Pelosi, A.</creator><creator>Rivetti, A.</creator><creator>Rocha Rolo, M. Da</creator><creator>Savrie, M.</creator><creator>Soldani, E.</creator><creator>Sosio, S.</creator><creator>Spataro, S.</creator><creator>Tskhadadze, E.</creator><creator>Verma, S.</creator><creator>Wheadon, R.</creator><creator>Yan, L.</creator><creator>Yuan, W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201811</creationdate><title>Optimization of the reconstruction algorithm in triple-GEM detector</title><author>Cossio, F. ; Alexeev, M. ; Amoroso, A. ; Ferroli, R. Baldini ; Balossino, I. ; Bertani, M. ; Bettoni, D. ; Bianchi, F. ; Bortone, A. ; Calcaterra, A. ; Canale, N. ; Capodiferro, M. ; Cassariti, V. ; Cerioni, S. ; Chai, J. ; Cheng, W. ; Chiozzi, S. ; Cibinetto, G. ; Ramusino, A. Cotta ; Cotto, G. ; Mori, F. De ; Destefanis, M. ; Dong, J. ; Evangelisti, F. ; Farinelli, R. ; Fava, L. ; Felici, G. ; Fioravanti, E. ; Garzia, I. ; Gatta, M. ; Giraudo, G. ; Greco, M. ; Lavezzi, L. ; Leng, C. ; Li, H. ; Maggiora, M. ; Malaguti, R. ; Mangoni, A. ; Marcello, S. ; Melchiorri, M. ; Mezzadri, G. ; Mignone, M. ; Morello, G. ; Pacetti, S. ; Patteri, P. ; Pellegrino, J. ; Pelosi, A. ; Rivetti, A. ; Rocha Rolo, M. Da ; Savrie, M. ; Soldani, E. ; Sosio, S. ; Spataro, S. ; Tskhadadze, E. ; Verma, S. ; Wheadon, R. ; Yan, L. ; Yuan, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ba7bac88898ec2e56ea183a81fd1afde00ccf4635aaa077a27f74b60a808c5493</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anodes</topic><topic>Detectors</topic><topic>GEM</topic><topic>High energy physics</topic><topic>Merging</topic><topic>Micro Pattern Gas Detectors</topic><topic>Reconstruction algorithms</topic><topic>Spatial resolution</topic><topic>Strips</topic><topic>Time measurement</topic><topic>tracking detectors</topic><topic>µTPC</topic><toplevel>online_resources</toplevel><creatorcontrib>Cossio, F.</creatorcontrib><creatorcontrib>Alexeev, M.</creatorcontrib><creatorcontrib>Amoroso, A.</creatorcontrib><creatorcontrib>Ferroli, R. Baldini</creatorcontrib><creatorcontrib>Balossino, I.</creatorcontrib><creatorcontrib>Bertani, M.</creatorcontrib><creatorcontrib>Bettoni, D.</creatorcontrib><creatorcontrib>Bianchi, F.</creatorcontrib><creatorcontrib>Bortone, A.</creatorcontrib><creatorcontrib>Calcaterra, A.</creatorcontrib><creatorcontrib>Canale, N.</creatorcontrib><creatorcontrib>Capodiferro, M.</creatorcontrib><creatorcontrib>Cassariti, V.</creatorcontrib><creatorcontrib>Cerioni, S.</creatorcontrib><creatorcontrib>Chai, J.</creatorcontrib><creatorcontrib>Cheng, W.</creatorcontrib><creatorcontrib>Chiozzi, S.</creatorcontrib><creatorcontrib>Cibinetto, G.</creatorcontrib><creatorcontrib>Ramusino, A. Cotta</creatorcontrib><creatorcontrib>Cotto, G.</creatorcontrib><creatorcontrib>Mori, F. De</creatorcontrib><creatorcontrib>Destefanis, M.</creatorcontrib><creatorcontrib>Dong, J.</creatorcontrib><creatorcontrib>Evangelisti, F.</creatorcontrib><creatorcontrib>Farinelli, R.</creatorcontrib><creatorcontrib>Fava, L.</creatorcontrib><creatorcontrib>Felici, G.</creatorcontrib><creatorcontrib>Fioravanti, E.</creatorcontrib><creatorcontrib>Garzia, I.</creatorcontrib><creatorcontrib>Gatta, M.</creatorcontrib><creatorcontrib>Giraudo, G.</creatorcontrib><creatorcontrib>Greco, M.</creatorcontrib><creatorcontrib>Lavezzi, L.</creatorcontrib><creatorcontrib>Leng, C.</creatorcontrib><creatorcontrib>Li, H.</creatorcontrib><creatorcontrib>Maggiora, M.</creatorcontrib><creatorcontrib>Malaguti, R.</creatorcontrib><creatorcontrib>Mangoni, A.</creatorcontrib><creatorcontrib>Marcello, S.</creatorcontrib><creatorcontrib>Melchiorri, M.</creatorcontrib><creatorcontrib>Mezzadri, G.</creatorcontrib><creatorcontrib>Mignone, M.</creatorcontrib><creatorcontrib>Morello, G.</creatorcontrib><creatorcontrib>Pacetti, S.</creatorcontrib><creatorcontrib>Patteri, P.</creatorcontrib><creatorcontrib>Pellegrino, J.</creatorcontrib><creatorcontrib>Pelosi, A.</creatorcontrib><creatorcontrib>Rivetti, A.</creatorcontrib><creatorcontrib>Rocha Rolo, M. Da</creatorcontrib><creatorcontrib>Savrie, M.</creatorcontrib><creatorcontrib>Soldani, E.</creatorcontrib><creatorcontrib>Sosio, S.</creatorcontrib><creatorcontrib>Spataro, S.</creatorcontrib><creatorcontrib>Tskhadadze, E.</creatorcontrib><creatorcontrib>Verma, S.</creatorcontrib><creatorcontrib>Wheadon, R.</creatorcontrib><creatorcontrib>Yan, L.</creatorcontrib><creatorcontrib>Yuan, W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cossio, F.</au><au>Alexeev, M.</au><au>Amoroso, A.</au><au>Ferroli, R. Baldini</au><au>Balossino, I.</au><au>Bertani, M.</au><au>Bettoni, D.</au><au>Bianchi, F.</au><au>Bortone, A.</au><au>Calcaterra, A.</au><au>Canale, N.</au><au>Capodiferro, M.</au><au>Cassariti, V.</au><au>Cerioni, S.</au><au>Chai, J.</au><au>Cheng, W.</au><au>Chiozzi, S.</au><au>Cibinetto, G.</au><au>Ramusino, A. Cotta</au><au>Cotto, G.</au><au>Mori, F. De</au><au>Destefanis, M.</au><au>Dong, J.</au><au>Evangelisti, F.</au><au>Farinelli, R.</au><au>Fava, L.</au><au>Felici, G.</au><au>Fioravanti, E.</au><au>Garzia, I.</au><au>Gatta, M.</au><au>Giraudo, G.</au><au>Greco, M.</au><au>Lavezzi, L.</au><au>Leng, C.</au><au>Li, H.</au><au>Maggiora, M.</au><au>Malaguti, R.</au><au>Mangoni, A.</au><au>Marcello, S.</au><au>Melchiorri, M.</au><au>Mezzadri, G.</au><au>Mignone, M.</au><au>Morello, G.</au><au>Pacetti, S.</au><au>Patteri, P.</au><au>Pellegrino, J.</au><au>Pelosi, A.</au><au>Rivetti, A.</au><au>Rocha Rolo, M. Da</au><au>Savrie, M.</au><au>Soldani, E.</au><au>Sosio, S.</au><au>Spataro, S.</au><au>Tskhadadze, E.</au><au>Verma, S.</au><au>Wheadon, R.</au><au>Yan, L.</au><au>Yuan, W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimization of the reconstruction algorithm in triple-GEM detector</atitle><btitle>2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC)</btitle><stitle>NSSMIC</stitle><date>2018-11</date><risdate>2018</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2577-0829</eissn><eisbn>9781538684948</eisbn><eisbn>1538684942</eisbn><abstract>Gas detectors are very light instruments used in high energy physics to measure the particle properties: position and momentum. Gas Electron Multiplier (GEM) technology has been invented by F. Sauli in 1997 and in the past tens of years the knowledge of this Micro Pattern Gas Detector (MPGD) increased. A design with a triple-GEM has been used in several experiments in high energy physics such as TOTEM and COMPASS. This technology allows to achieve good spatial resolution performances and can be used to create large area detector with a shapeable surface, e.g. the KLOE2 Inner Tracker or the upcoming upgrade of the BESIII Inner Tracker. A triple-GEM uses three stages of GEMs, with high electric field, to amplify the number of the electrons produced by the primary ionization of the charged particle passing in the gas, with a total gain of about 10 4 . The signal is then collected on a segmented anode and dedicated algorithms are used to reconstruct the charged particle position. The measurement of both the time and the charge information on the anode strip allows to use two algorithms: the Charge Centroid and the micro-Time Projection Chamber readout. The CC is strongly performing with orthogonal tracks while the µTPC gives its best results if magnetic field or if non-orthogonal tracks are present. These reconstruction methods are anti-correlated and the combination of the two is needed to keep the spatial resolution stable between the regions with different performances. A beam test with planar triple-GEM has been performed and in this presentation the merging algorithm of the CC and µTPC as a function of the charge and the multiplicity of the signal will be shown: a stable spatial resolution of about 130 µm has been achieved. In addition to this, the impact of the transversal and longitudinal diffusions on the reconstruction in µTPC mode will be shown, as well as the inter-strip capacitance effect.</abstract><pub>IEEE</pub><doi>10.1109/NSSMIC.2018.8824331</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2577-0829
ispartof 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), 2018, p.1-5
issn 2577-0829
language eng
recordid cdi_ieee_primary_8824331
source IEEE Xplore All Conference Series
subjects Anodes
Detectors
GEM
High energy physics
Merging
Micro Pattern Gas Detectors
Reconstruction algorithms
Spatial resolution
Strips
Time measurement
tracking detectors
µTPC
title Optimization of the reconstruction algorithm in triple-GEM detector
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimization%20of%20the%20reconstruction%20algorithm%20in%20triple-GEM%20detector&rft.btitle=2018%20IEEE%20Nuclear%20Science%20Symposium%20and%20Medical%20Imaging%20Conference%20Proceedings%20(NSS/MIC)&rft.au=Cossio,%20F.&rft.date=2018-11&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2577-0829&rft_id=info:doi/10.1109/NSSMIC.2018.8824331&rft.eisbn=9781538684948&rft.eisbn_list=1538684942&rft_dat=%3Cieee_CHZPO%3E8824331%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-ba7bac88898ec2e56ea183a81fd1afde00ccf4635aaa077a27f74b60a808c5493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8824331&rfr_iscdi=true