Loading…
A Stochastic Model for Prediction and Avoidance of RF Interference to Cognitive Radars
This work presents a real-time implementation of a cognitive radar system that predicts and avoids interference using a stochastic model of radio frequency (RF) activity. Next-generation radar/radio systems must sense, predict, and avoid interference as the spectrum grows more crowded. The tested co...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Kovarskiy, Jacob A. Narayanan, Ram M. Martone, Anthony F. Sherbondy, Kelly D. |
description | This work presents a real-time implementation of a cognitive radar system that predicts and avoids interference using a stochastic model of radio frequency (RF) activity. Next-generation radar/radio systems must sense, predict, and avoid interference as the spectrum grows more crowded. The tested cognitive radar monitors the RF environment to estimate the stochastic model parameters followed by a prediction and avoidance stage. An alternating renewal process models RF activity with random busy and idle time distributions, which are used to obtain interference probabilities. These interference probabilities determine a radar transmit bandwidth and center frequency to avoid colliding with other emitters in the environment. The approach is evaluated in terms of collisions and missed opportunities on a set of simulated and real measured RF spectra. Additionally, this paper outlines the effects and complexity of utilizing different distributions, parameters, and modes of operation for the implemented radar system. The results suggest that this approach accurately predicts and avoids RF interference with a degradation in performance as model variance increases. |
doi_str_mv | 10.1109/RADAR.2019.8835523 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8835523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8835523</ieee_id><sourcerecordid>8835523</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c0db72f4bf7f4e98e362f1b6bd86845c409d0c83c44192c0209162c8b72270f63</originalsourceid><addsrcrecordid>eNotkMtKAzEYRqMgWGtfQDd5gRlznSTLYbS1UFHGy7Zkkj8aqRPJhIJvb8WuDhw43-JD6IqSmlJibvr2tu1rRqipteZSMn6CFkZpqpimtFGGnaIZ40pWklN9ji6m6ZMQyQ9qht5a_FyS-7BTiQ4_JA87HFLGTxl8dCWmEdvR43aforejA5wC7pd4PRbIATL8qZJwl97HWOIecG-9zdMlOgt2N8HiyDl6Xd69dPfV5nG17tpNFamSpXLED4oFMQQVBBgNvGGBDs3gdaOFdIIYT5zmTghqmCOMGNowpw8RUyQ0fI6u_3cjAGy_c_yy-Wd7vIH_AjxHUFw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Stochastic Model for Prediction and Avoidance of RF Interference to Cognitive Radars</title><source>IEEE Xplore All Conference Series</source><creator>Kovarskiy, Jacob A. ; Narayanan, Ram M. ; Martone, Anthony F. ; Sherbondy, Kelly D.</creator><creatorcontrib>Kovarskiy, Jacob A. ; Narayanan, Ram M. ; Martone, Anthony F. ; Sherbondy, Kelly D.</creatorcontrib><description>This work presents a real-time implementation of a cognitive radar system that predicts and avoids interference using a stochastic model of radio frequency (RF) activity. Next-generation radar/radio systems must sense, predict, and avoid interference as the spectrum grows more crowded. The tested cognitive radar monitors the RF environment to estimate the stochastic model parameters followed by a prediction and avoidance stage. An alternating renewal process models RF activity with random busy and idle time distributions, which are used to obtain interference probabilities. These interference probabilities determine a radar transmit bandwidth and center frequency to avoid colliding with other emitters in the environment. The approach is evaluated in terms of collisions and missed opportunities on a set of simulated and real measured RF spectra. Additionally, this paper outlines the effects and complexity of utilizing different distributions, parameters, and modes of operation for the implemented radar system. The results suggest that this approach accurately predicts and avoids RF interference with a degradation in performance as model variance increases.</description><identifier>EISSN: 2375-5318</identifier><identifier>EISBN: 9781728116792</identifier><identifier>EISBN: 1728116791</identifier><identifier>DOI: 10.1109/RADAR.2019.8835523</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Cognitive radar ; Interference ; interference avoidance ; Mathematical model ; Radio frequency ; software-defined radio ; spectrum sharing ; stochastic modeling ; Stochastic processes</subject><ispartof>2019 IEEE Radar Conference (RadarConf), 2019, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8835523$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8835523$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kovarskiy, Jacob A.</creatorcontrib><creatorcontrib>Narayanan, Ram M.</creatorcontrib><creatorcontrib>Martone, Anthony F.</creatorcontrib><creatorcontrib>Sherbondy, Kelly D.</creatorcontrib><title>A Stochastic Model for Prediction and Avoidance of RF Interference to Cognitive Radars</title><title>2019 IEEE Radar Conference (RadarConf)</title><addtitle>RADAR</addtitle><description>This work presents a real-time implementation of a cognitive radar system that predicts and avoids interference using a stochastic model of radio frequency (RF) activity. Next-generation radar/radio systems must sense, predict, and avoid interference as the spectrum grows more crowded. The tested cognitive radar monitors the RF environment to estimate the stochastic model parameters followed by a prediction and avoidance stage. An alternating renewal process models RF activity with random busy and idle time distributions, which are used to obtain interference probabilities. These interference probabilities determine a radar transmit bandwidth and center frequency to avoid colliding with other emitters in the environment. The approach is evaluated in terms of collisions and missed opportunities on a set of simulated and real measured RF spectra. Additionally, this paper outlines the effects and complexity of utilizing different distributions, parameters, and modes of operation for the implemented radar system. The results suggest that this approach accurately predicts and avoids RF interference with a degradation in performance as model variance increases.</description><subject>Bandwidth</subject><subject>Cognitive radar</subject><subject>Interference</subject><subject>interference avoidance</subject><subject>Mathematical model</subject><subject>Radio frequency</subject><subject>software-defined radio</subject><subject>spectrum sharing</subject><subject>stochastic modeling</subject><subject>Stochastic processes</subject><issn>2375-5318</issn><isbn>9781728116792</isbn><isbn>1728116791</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKAzEYRqMgWGtfQDd5gRlznSTLYbS1UFHGy7Zkkj8aqRPJhIJvb8WuDhw43-JD6IqSmlJibvr2tu1rRqipteZSMn6CFkZpqpimtFGGnaIZ40pWklN9ji6m6ZMQyQ9qht5a_FyS-7BTiQ4_JA87HFLGTxl8dCWmEdvR43aforejA5wC7pd4PRbIATL8qZJwl97HWOIecG-9zdMlOgt2N8HiyDl6Xd69dPfV5nG17tpNFamSpXLED4oFMQQVBBgNvGGBDs3gdaOFdIIYT5zmTghqmCOMGNowpw8RUyQ0fI6u_3cjAGy_c_yy-Wd7vIH_AjxHUFw</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Kovarskiy, Jacob A.</creator><creator>Narayanan, Ram M.</creator><creator>Martone, Anthony F.</creator><creator>Sherbondy, Kelly D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201904</creationdate><title>A Stochastic Model for Prediction and Avoidance of RF Interference to Cognitive Radars</title><author>Kovarskiy, Jacob A. ; Narayanan, Ram M. ; Martone, Anthony F. ; Sherbondy, Kelly D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c0db72f4bf7f4e98e362f1b6bd86845c409d0c83c44192c0209162c8b72270f63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bandwidth</topic><topic>Cognitive radar</topic><topic>Interference</topic><topic>interference avoidance</topic><topic>Mathematical model</topic><topic>Radio frequency</topic><topic>software-defined radio</topic><topic>spectrum sharing</topic><topic>stochastic modeling</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Kovarskiy, Jacob A.</creatorcontrib><creatorcontrib>Narayanan, Ram M.</creatorcontrib><creatorcontrib>Martone, Anthony F.</creatorcontrib><creatorcontrib>Sherbondy, Kelly D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kovarskiy, Jacob A.</au><au>Narayanan, Ram M.</au><au>Martone, Anthony F.</au><au>Sherbondy, Kelly D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Stochastic Model for Prediction and Avoidance of RF Interference to Cognitive Radars</atitle><btitle>2019 IEEE Radar Conference (RadarConf)</btitle><stitle>RADAR</stitle><date>2019-04</date><risdate>2019</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2375-5318</eissn><eisbn>9781728116792</eisbn><eisbn>1728116791</eisbn><abstract>This work presents a real-time implementation of a cognitive radar system that predicts and avoids interference using a stochastic model of radio frequency (RF) activity. Next-generation radar/radio systems must sense, predict, and avoid interference as the spectrum grows more crowded. The tested cognitive radar monitors the RF environment to estimate the stochastic model parameters followed by a prediction and avoidance stage. An alternating renewal process models RF activity with random busy and idle time distributions, which are used to obtain interference probabilities. These interference probabilities determine a radar transmit bandwidth and center frequency to avoid colliding with other emitters in the environment. The approach is evaluated in terms of collisions and missed opportunities on a set of simulated and real measured RF spectra. Additionally, this paper outlines the effects and complexity of utilizing different distributions, parameters, and modes of operation for the implemented radar system. The results suggest that this approach accurately predicts and avoids RF interference with a degradation in performance as model variance increases.</abstract><pub>IEEE</pub><doi>10.1109/RADAR.2019.8835523</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2375-5318 |
ispartof | 2019 IEEE Radar Conference (RadarConf), 2019, p.1-6 |
issn | 2375-5318 |
language | eng |
recordid | cdi_ieee_primary_8835523 |
source | IEEE Xplore All Conference Series |
subjects | Bandwidth Cognitive radar Interference interference avoidance Mathematical model Radio frequency software-defined radio spectrum sharing stochastic modeling Stochastic processes |
title | A Stochastic Model for Prediction and Avoidance of RF Interference to Cognitive Radars |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Stochastic%20Model%20for%20Prediction%20and%20Avoidance%20of%20RF%20Interference%20to%20Cognitive%20Radars&rft.btitle=2019%20IEEE%20Radar%20Conference%20(RadarConf)&rft.au=Kovarskiy,%20Jacob%20A.&rft.date=2019-04&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2375-5318&rft_id=info:doi/10.1109/RADAR.2019.8835523&rft.eisbn=9781728116792&rft.eisbn_list=1728116791&rft_dat=%3Cieee_CHZPO%3E8835523%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-c0db72f4bf7f4e98e362f1b6bd86845c409d0c83c44192c0209162c8b72270f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8835523&rfr_iscdi=true |