Loading…

A Stochastic Model for Prediction and Avoidance of RF Interference to Cognitive Radars

This work presents a real-time implementation of a cognitive radar system that predicts and avoids interference using a stochastic model of radio frequency (RF) activity. Next-generation radar/radio systems must sense, predict, and avoid interference as the spectrum grows more crowded. The tested co...

Full description

Saved in:
Bibliographic Details
Main Authors: Kovarskiy, Jacob A., Narayanan, Ram M., Martone, Anthony F., Sherbondy, Kelly D.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Kovarskiy, Jacob A.
Narayanan, Ram M.
Martone, Anthony F.
Sherbondy, Kelly D.
description This work presents a real-time implementation of a cognitive radar system that predicts and avoids interference using a stochastic model of radio frequency (RF) activity. Next-generation radar/radio systems must sense, predict, and avoid interference as the spectrum grows more crowded. The tested cognitive radar monitors the RF environment to estimate the stochastic model parameters followed by a prediction and avoidance stage. An alternating renewal process models RF activity with random busy and idle time distributions, which are used to obtain interference probabilities. These interference probabilities determine a radar transmit bandwidth and center frequency to avoid colliding with other emitters in the environment. The approach is evaluated in terms of collisions and missed opportunities on a set of simulated and real measured RF spectra. Additionally, this paper outlines the effects and complexity of utilizing different distributions, parameters, and modes of operation for the implemented radar system. The results suggest that this approach accurately predicts and avoids RF interference with a degradation in performance as model variance increases.
doi_str_mv 10.1109/RADAR.2019.8835523
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8835523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8835523</ieee_id><sourcerecordid>8835523</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c0db72f4bf7f4e98e362f1b6bd86845c409d0c83c44192c0209162c8b72270f63</originalsourceid><addsrcrecordid>eNotkMtKAzEYRqMgWGtfQDd5gRlznSTLYbS1UFHGy7Zkkj8aqRPJhIJvb8WuDhw43-JD6IqSmlJibvr2tu1rRqipteZSMn6CFkZpqpimtFGGnaIZ40pWklN9ji6m6ZMQyQ9qht5a_FyS-7BTiQ4_JA87HFLGTxl8dCWmEdvR43aforejA5wC7pd4PRbIATL8qZJwl97HWOIecG-9zdMlOgt2N8HiyDl6Xd69dPfV5nG17tpNFamSpXLED4oFMQQVBBgNvGGBDs3gdaOFdIIYT5zmTghqmCOMGNowpw8RUyQ0fI6u_3cjAGy_c_yy-Wd7vIH_AjxHUFw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Stochastic Model for Prediction and Avoidance of RF Interference to Cognitive Radars</title><source>IEEE Xplore All Conference Series</source><creator>Kovarskiy, Jacob A. ; Narayanan, Ram M. ; Martone, Anthony F. ; Sherbondy, Kelly D.</creator><creatorcontrib>Kovarskiy, Jacob A. ; Narayanan, Ram M. ; Martone, Anthony F. ; Sherbondy, Kelly D.</creatorcontrib><description>This work presents a real-time implementation of a cognitive radar system that predicts and avoids interference using a stochastic model of radio frequency (RF) activity. Next-generation radar/radio systems must sense, predict, and avoid interference as the spectrum grows more crowded. The tested cognitive radar monitors the RF environment to estimate the stochastic model parameters followed by a prediction and avoidance stage. An alternating renewal process models RF activity with random busy and idle time distributions, which are used to obtain interference probabilities. These interference probabilities determine a radar transmit bandwidth and center frequency to avoid colliding with other emitters in the environment. The approach is evaluated in terms of collisions and missed opportunities on a set of simulated and real measured RF spectra. Additionally, this paper outlines the effects and complexity of utilizing different distributions, parameters, and modes of operation for the implemented radar system. The results suggest that this approach accurately predicts and avoids RF interference with a degradation in performance as model variance increases.</description><identifier>EISSN: 2375-5318</identifier><identifier>EISBN: 9781728116792</identifier><identifier>EISBN: 1728116791</identifier><identifier>DOI: 10.1109/RADAR.2019.8835523</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Cognitive radar ; Interference ; interference avoidance ; Mathematical model ; Radio frequency ; software-defined radio ; spectrum sharing ; stochastic modeling ; Stochastic processes</subject><ispartof>2019 IEEE Radar Conference (RadarConf), 2019, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8835523$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8835523$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kovarskiy, Jacob A.</creatorcontrib><creatorcontrib>Narayanan, Ram M.</creatorcontrib><creatorcontrib>Martone, Anthony F.</creatorcontrib><creatorcontrib>Sherbondy, Kelly D.</creatorcontrib><title>A Stochastic Model for Prediction and Avoidance of RF Interference to Cognitive Radars</title><title>2019 IEEE Radar Conference (RadarConf)</title><addtitle>RADAR</addtitle><description>This work presents a real-time implementation of a cognitive radar system that predicts and avoids interference using a stochastic model of radio frequency (RF) activity. Next-generation radar/radio systems must sense, predict, and avoid interference as the spectrum grows more crowded. The tested cognitive radar monitors the RF environment to estimate the stochastic model parameters followed by a prediction and avoidance stage. An alternating renewal process models RF activity with random busy and idle time distributions, which are used to obtain interference probabilities. These interference probabilities determine a radar transmit bandwidth and center frequency to avoid colliding with other emitters in the environment. The approach is evaluated in terms of collisions and missed opportunities on a set of simulated and real measured RF spectra. Additionally, this paper outlines the effects and complexity of utilizing different distributions, parameters, and modes of operation for the implemented radar system. The results suggest that this approach accurately predicts and avoids RF interference with a degradation in performance as model variance increases.</description><subject>Bandwidth</subject><subject>Cognitive radar</subject><subject>Interference</subject><subject>interference avoidance</subject><subject>Mathematical model</subject><subject>Radio frequency</subject><subject>software-defined radio</subject><subject>spectrum sharing</subject><subject>stochastic modeling</subject><subject>Stochastic processes</subject><issn>2375-5318</issn><isbn>9781728116792</isbn><isbn>1728116791</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKAzEYRqMgWGtfQDd5gRlznSTLYbS1UFHGy7Zkkj8aqRPJhIJvb8WuDhw43-JD6IqSmlJibvr2tu1rRqipteZSMn6CFkZpqpimtFGGnaIZ40pWklN9ji6m6ZMQyQ9qht5a_FyS-7BTiQ4_JA87HFLGTxl8dCWmEdvR43aforejA5wC7pd4PRbIATL8qZJwl97HWOIecG-9zdMlOgt2N8HiyDl6Xd69dPfV5nG17tpNFamSpXLED4oFMQQVBBgNvGGBDs3gdaOFdIIYT5zmTghqmCOMGNowpw8RUyQ0fI6u_3cjAGy_c_yy-Wd7vIH_AjxHUFw</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Kovarskiy, Jacob A.</creator><creator>Narayanan, Ram M.</creator><creator>Martone, Anthony F.</creator><creator>Sherbondy, Kelly D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201904</creationdate><title>A Stochastic Model for Prediction and Avoidance of RF Interference to Cognitive Radars</title><author>Kovarskiy, Jacob A. ; Narayanan, Ram M. ; Martone, Anthony F. ; Sherbondy, Kelly D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c0db72f4bf7f4e98e362f1b6bd86845c409d0c83c44192c0209162c8b72270f63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bandwidth</topic><topic>Cognitive radar</topic><topic>Interference</topic><topic>interference avoidance</topic><topic>Mathematical model</topic><topic>Radio frequency</topic><topic>software-defined radio</topic><topic>spectrum sharing</topic><topic>stochastic modeling</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Kovarskiy, Jacob A.</creatorcontrib><creatorcontrib>Narayanan, Ram M.</creatorcontrib><creatorcontrib>Martone, Anthony F.</creatorcontrib><creatorcontrib>Sherbondy, Kelly D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kovarskiy, Jacob A.</au><au>Narayanan, Ram M.</au><au>Martone, Anthony F.</au><au>Sherbondy, Kelly D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Stochastic Model for Prediction and Avoidance of RF Interference to Cognitive Radars</atitle><btitle>2019 IEEE Radar Conference (RadarConf)</btitle><stitle>RADAR</stitle><date>2019-04</date><risdate>2019</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2375-5318</eissn><eisbn>9781728116792</eisbn><eisbn>1728116791</eisbn><abstract>This work presents a real-time implementation of a cognitive radar system that predicts and avoids interference using a stochastic model of radio frequency (RF) activity. Next-generation radar/radio systems must sense, predict, and avoid interference as the spectrum grows more crowded. The tested cognitive radar monitors the RF environment to estimate the stochastic model parameters followed by a prediction and avoidance stage. An alternating renewal process models RF activity with random busy and idle time distributions, which are used to obtain interference probabilities. These interference probabilities determine a radar transmit bandwidth and center frequency to avoid colliding with other emitters in the environment. The approach is evaluated in terms of collisions and missed opportunities on a set of simulated and real measured RF spectra. Additionally, this paper outlines the effects and complexity of utilizing different distributions, parameters, and modes of operation for the implemented radar system. The results suggest that this approach accurately predicts and avoids RF interference with a degradation in performance as model variance increases.</abstract><pub>IEEE</pub><doi>10.1109/RADAR.2019.8835523</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2375-5318
ispartof 2019 IEEE Radar Conference (RadarConf), 2019, p.1-6
issn 2375-5318
language eng
recordid cdi_ieee_primary_8835523
source IEEE Xplore All Conference Series
subjects Bandwidth
Cognitive radar
Interference
interference avoidance
Mathematical model
Radio frequency
software-defined radio
spectrum sharing
stochastic modeling
Stochastic processes
title A Stochastic Model for Prediction and Avoidance of RF Interference to Cognitive Radars
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Stochastic%20Model%20for%20Prediction%20and%20Avoidance%20of%20RF%20Interference%20to%20Cognitive%20Radars&rft.btitle=2019%20IEEE%20Radar%20Conference%20(RadarConf)&rft.au=Kovarskiy,%20Jacob%20A.&rft.date=2019-04&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2375-5318&rft_id=info:doi/10.1109/RADAR.2019.8835523&rft.eisbn=9781728116792&rft.eisbn_list=1728116791&rft_dat=%3Cieee_CHZPO%3E8835523%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-c0db72f4bf7f4e98e362f1b6bd86845c409d0c83c44192c0209162c8b72270f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8835523&rfr_iscdi=true