Loading…

Assessing the Performance of Panel Data Synthesis Approach

Organizations that seek to advance their ability to screen employees and mitigate risk may use Inference Enterprise Modeling (IEM) to develop models to predict the effects of proposed enhancements. However, organizations that do not have the resources to perform these tasks may outsource this work t...

Full description

Saved in:
Bibliographic Details
Main Authors: Lee, James D., Li, Wanru, Matsumoto, Shou, Ajina, Mohanad, Yousefi, Bahram, Laskey, Kathryn B.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Lee, James D.
Li, Wanru
Matsumoto, Shou
Ajina, Mohanad
Yousefi, Bahram
Laskey, Kathryn B.
description Organizations that seek to advance their ability to screen employees and mitigate risk may use Inference Enterprise Modeling (IEM) to develop models to predict the effects of proposed enhancements. However, organizations that do not have the resources to perform these tasks may outsource this work to a third-party expert. Since there exist concerns about disclosing information about individuals, sensitive details of organizations, and other private information, information shared with external parties may be aggregated to hide confidential information while providing essential data required by third parties to perform their duties. In this study, we evaluate how models constructed from aggregated data compare to models constructed using full data. We further define IEM best practices in the area of population modeling.
doi_str_mv 10.1109/SYSCON.2019.8836853
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8836853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8836853</ieee_id><sourcerecordid>8836853</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b039a8483c1cc761501f4b95a060028f08f7e496e49b574d1d6909e8694f4b9a3</originalsourceid><addsrcrecordid>eNotj7FOwzAURQ1SJUrbL-jiH0h4L7afbbYoQEGqaKXAwFQ5qU2D2iSKs_TvKaLD0V2OrnQYWyKkiGAfyq-y2LynGaBNjRFklLhh96iEISMsZbdsmkmdJZakvmOLGH8AAAlJWJyyxzxGH2PTfvPx4PnWD6EbTq6tPe8C37rWH_mTGx0vz-1FiE3ked8PnasPczYJ7hj94roz9vny_FG8JuvN6q3I10mDWo1JBcI6I42osa41oQIMsrLKAQFkJoAJ2ktLFyql5R73ZMF6Q1b-eU7M2PL_t_He7_qhObnhvLumil8xaEbj</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Assessing the Performance of Panel Data Synthesis Approach</title><source>IEEE Xplore All Conference Series</source><creator>Lee, James D. ; Li, Wanru ; Matsumoto, Shou ; Ajina, Mohanad ; Yousefi, Bahram ; Laskey, Kathryn B.</creator><creatorcontrib>Lee, James D. ; Li, Wanru ; Matsumoto, Shou ; Ajina, Mohanad ; Yousefi, Bahram ; Laskey, Kathryn B.</creatorcontrib><description>Organizations that seek to advance their ability to screen employees and mitigate risk may use Inference Enterprise Modeling (IEM) to develop models to predict the effects of proposed enhancements. However, organizations that do not have the resources to perform these tasks may outsource this work to a third-party expert. Since there exist concerns about disclosing information about individuals, sensitive details of organizations, and other private information, information shared with external parties may be aggregated to hide confidential information while providing essential data required by third parties to perform their duties. In this study, we evaluate how models constructed from aggregated data compare to models constructed using full data. We further define IEM best practices in the area of population modeling.</description><identifier>EISSN: 2472-9647</identifier><identifier>EISBN: 1538683962</identifier><identifier>EISBN: 9781538683965</identifier><identifier>DOI: 10.1109/SYSCON.2019.8836853</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data models ; Data Synthesis ; Histograms ; Inference Enterprise ; Organizations ; Panel Data ; Phishing ; Population Reconstruction ; Predictive models ; Sociology</subject><ispartof>2019 IEEE International Systems Conference (SysCon), 2019, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8836853$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8836853$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, James D.</creatorcontrib><creatorcontrib>Li, Wanru</creatorcontrib><creatorcontrib>Matsumoto, Shou</creatorcontrib><creatorcontrib>Ajina, Mohanad</creatorcontrib><creatorcontrib>Yousefi, Bahram</creatorcontrib><creatorcontrib>Laskey, Kathryn B.</creatorcontrib><title>Assessing the Performance of Panel Data Synthesis Approach</title><title>2019 IEEE International Systems Conference (SysCon)</title><addtitle>SYSCON</addtitle><description>Organizations that seek to advance their ability to screen employees and mitigate risk may use Inference Enterprise Modeling (IEM) to develop models to predict the effects of proposed enhancements. However, organizations that do not have the resources to perform these tasks may outsource this work to a third-party expert. Since there exist concerns about disclosing information about individuals, sensitive details of organizations, and other private information, information shared with external parties may be aggregated to hide confidential information while providing essential data required by third parties to perform their duties. In this study, we evaluate how models constructed from aggregated data compare to models constructed using full data. We further define IEM best practices in the area of population modeling.</description><subject>Data models</subject><subject>Data Synthesis</subject><subject>Histograms</subject><subject>Inference Enterprise</subject><subject>Organizations</subject><subject>Panel Data</subject><subject>Phishing</subject><subject>Population Reconstruction</subject><subject>Predictive models</subject><subject>Sociology</subject><issn>2472-9647</issn><isbn>1538683962</isbn><isbn>9781538683965</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj7FOwzAURQ1SJUrbL-jiH0h4L7afbbYoQEGqaKXAwFQ5qU2D2iSKs_TvKaLD0V2OrnQYWyKkiGAfyq-y2LynGaBNjRFklLhh96iEISMsZbdsmkmdJZakvmOLGH8AAAlJWJyyxzxGH2PTfvPx4PnWD6EbTq6tPe8C37rWH_mTGx0vz-1FiE3ked8PnasPczYJ7hj94roz9vny_FG8JuvN6q3I10mDWo1JBcI6I42osa41oQIMsrLKAQFkJoAJ2ktLFyql5R73ZMF6Q1b-eU7M2PL_t_He7_qhObnhvLumil8xaEbj</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Lee, James D.</creator><creator>Li, Wanru</creator><creator>Matsumoto, Shou</creator><creator>Ajina, Mohanad</creator><creator>Yousefi, Bahram</creator><creator>Laskey, Kathryn B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201904</creationdate><title>Assessing the Performance of Panel Data Synthesis Approach</title><author>Lee, James D. ; Li, Wanru ; Matsumoto, Shou ; Ajina, Mohanad ; Yousefi, Bahram ; Laskey, Kathryn B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b039a8483c1cc761501f4b95a060028f08f7e496e49b574d1d6909e8694f4b9a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data models</topic><topic>Data Synthesis</topic><topic>Histograms</topic><topic>Inference Enterprise</topic><topic>Organizations</topic><topic>Panel Data</topic><topic>Phishing</topic><topic>Population Reconstruction</topic><topic>Predictive models</topic><topic>Sociology</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, James D.</creatorcontrib><creatorcontrib>Li, Wanru</creatorcontrib><creatorcontrib>Matsumoto, Shou</creatorcontrib><creatorcontrib>Ajina, Mohanad</creatorcontrib><creatorcontrib>Yousefi, Bahram</creatorcontrib><creatorcontrib>Laskey, Kathryn B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, James D.</au><au>Li, Wanru</au><au>Matsumoto, Shou</au><au>Ajina, Mohanad</au><au>Yousefi, Bahram</au><au>Laskey, Kathryn B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Assessing the Performance of Panel Data Synthesis Approach</atitle><btitle>2019 IEEE International Systems Conference (SysCon)</btitle><stitle>SYSCON</stitle><date>2019-04</date><risdate>2019</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2472-9647</eissn><eisbn>1538683962</eisbn><eisbn>9781538683965</eisbn><abstract>Organizations that seek to advance their ability to screen employees and mitigate risk may use Inference Enterprise Modeling (IEM) to develop models to predict the effects of proposed enhancements. However, organizations that do not have the resources to perform these tasks may outsource this work to a third-party expert. Since there exist concerns about disclosing information about individuals, sensitive details of organizations, and other private information, information shared with external parties may be aggregated to hide confidential information while providing essential data required by third parties to perform their duties. In this study, we evaluate how models constructed from aggregated data compare to models constructed using full data. We further define IEM best practices in the area of population modeling.</abstract><pub>IEEE</pub><doi>10.1109/SYSCON.2019.8836853</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2472-9647
ispartof 2019 IEEE International Systems Conference (SysCon), 2019, p.1-6
issn 2472-9647
language eng
recordid cdi_ieee_primary_8836853
source IEEE Xplore All Conference Series
subjects Data models
Data Synthesis
Histograms
Inference Enterprise
Organizations
Panel Data
Phishing
Population Reconstruction
Predictive models
Sociology
title Assessing the Performance of Panel Data Synthesis Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Assessing%20the%20Performance%20of%20Panel%20Data%20Synthesis%20Approach&rft.btitle=2019%20IEEE%20International%20Systems%20Conference%20(SysCon)&rft.au=Lee,%20James%20D.&rft.date=2019-04&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2472-9647&rft_id=info:doi/10.1109/SYSCON.2019.8836853&rft.eisbn=1538683962&rft.eisbn_list=9781538683965&rft_dat=%3Cieee_CHZPO%3E8836853%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-b039a8483c1cc761501f4b95a060028f08f7e496e49b574d1d6909e8694f4b9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8836853&rfr_iscdi=true