Loading…
Assessing the Performance of Panel Data Synthesis Approach
Organizations that seek to advance their ability to screen employees and mitigate risk may use Inference Enterprise Modeling (IEM) to develop models to predict the effects of proposed enhancements. However, organizations that do not have the resources to perform these tasks may outsource this work t...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Lee, James D. Li, Wanru Matsumoto, Shou Ajina, Mohanad Yousefi, Bahram Laskey, Kathryn B. |
description | Organizations that seek to advance their ability to screen employees and mitigate risk may use Inference Enterprise Modeling (IEM) to develop models to predict the effects of proposed enhancements. However, organizations that do not have the resources to perform these tasks may outsource this work to a third-party expert. Since there exist concerns about disclosing information about individuals, sensitive details of organizations, and other private information, information shared with external parties may be aggregated to hide confidential information while providing essential data required by third parties to perform their duties. In this study, we evaluate how models constructed from aggregated data compare to models constructed using full data. We further define IEM best practices in the area of population modeling. |
doi_str_mv | 10.1109/SYSCON.2019.8836853 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8836853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8836853</ieee_id><sourcerecordid>8836853</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b039a8483c1cc761501f4b95a060028f08f7e496e49b574d1d6909e8694f4b9a3</originalsourceid><addsrcrecordid>eNotj7FOwzAURQ1SJUrbL-jiH0h4L7afbbYoQEGqaKXAwFQ5qU2D2iSKs_TvKaLD0V2OrnQYWyKkiGAfyq-y2LynGaBNjRFklLhh96iEISMsZbdsmkmdJZakvmOLGH8AAAlJWJyyxzxGH2PTfvPx4PnWD6EbTq6tPe8C37rWH_mTGx0vz-1FiE3ked8PnasPczYJ7hj94roz9vny_FG8JuvN6q3I10mDWo1JBcI6I42osa41oQIMsrLKAQFkJoAJ2ktLFyql5R73ZMF6Q1b-eU7M2PL_t_He7_qhObnhvLumil8xaEbj</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Assessing the Performance of Panel Data Synthesis Approach</title><source>IEEE Xplore All Conference Series</source><creator>Lee, James D. ; Li, Wanru ; Matsumoto, Shou ; Ajina, Mohanad ; Yousefi, Bahram ; Laskey, Kathryn B.</creator><creatorcontrib>Lee, James D. ; Li, Wanru ; Matsumoto, Shou ; Ajina, Mohanad ; Yousefi, Bahram ; Laskey, Kathryn B.</creatorcontrib><description>Organizations that seek to advance their ability to screen employees and mitigate risk may use Inference Enterprise Modeling (IEM) to develop models to predict the effects of proposed enhancements. However, organizations that do not have the resources to perform these tasks may outsource this work to a third-party expert. Since there exist concerns about disclosing information about individuals, sensitive details of organizations, and other private information, information shared with external parties may be aggregated to hide confidential information while providing essential data required by third parties to perform their duties. In this study, we evaluate how models constructed from aggregated data compare to models constructed using full data. We further define IEM best practices in the area of population modeling.</description><identifier>EISSN: 2472-9647</identifier><identifier>EISBN: 1538683962</identifier><identifier>EISBN: 9781538683965</identifier><identifier>DOI: 10.1109/SYSCON.2019.8836853</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data models ; Data Synthesis ; Histograms ; Inference Enterprise ; Organizations ; Panel Data ; Phishing ; Population Reconstruction ; Predictive models ; Sociology</subject><ispartof>2019 IEEE International Systems Conference (SysCon), 2019, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8836853$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8836853$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, James D.</creatorcontrib><creatorcontrib>Li, Wanru</creatorcontrib><creatorcontrib>Matsumoto, Shou</creatorcontrib><creatorcontrib>Ajina, Mohanad</creatorcontrib><creatorcontrib>Yousefi, Bahram</creatorcontrib><creatorcontrib>Laskey, Kathryn B.</creatorcontrib><title>Assessing the Performance of Panel Data Synthesis Approach</title><title>2019 IEEE International Systems Conference (SysCon)</title><addtitle>SYSCON</addtitle><description>Organizations that seek to advance their ability to screen employees and mitigate risk may use Inference Enterprise Modeling (IEM) to develop models to predict the effects of proposed enhancements. However, organizations that do not have the resources to perform these tasks may outsource this work to a third-party expert. Since there exist concerns about disclosing information about individuals, sensitive details of organizations, and other private information, information shared with external parties may be aggregated to hide confidential information while providing essential data required by third parties to perform their duties. In this study, we evaluate how models constructed from aggregated data compare to models constructed using full data. We further define IEM best practices in the area of population modeling.</description><subject>Data models</subject><subject>Data Synthesis</subject><subject>Histograms</subject><subject>Inference Enterprise</subject><subject>Organizations</subject><subject>Panel Data</subject><subject>Phishing</subject><subject>Population Reconstruction</subject><subject>Predictive models</subject><subject>Sociology</subject><issn>2472-9647</issn><isbn>1538683962</isbn><isbn>9781538683965</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj7FOwzAURQ1SJUrbL-jiH0h4L7afbbYoQEGqaKXAwFQ5qU2D2iSKs_TvKaLD0V2OrnQYWyKkiGAfyq-y2LynGaBNjRFklLhh96iEISMsZbdsmkmdJZakvmOLGH8AAAlJWJyyxzxGH2PTfvPx4PnWD6EbTq6tPe8C37rWH_mTGx0vz-1FiE3ked8PnasPczYJ7hj94roz9vny_FG8JuvN6q3I10mDWo1JBcI6I42osa41oQIMsrLKAQFkJoAJ2ktLFyql5R73ZMF6Q1b-eU7M2PL_t_He7_qhObnhvLumil8xaEbj</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Lee, James D.</creator><creator>Li, Wanru</creator><creator>Matsumoto, Shou</creator><creator>Ajina, Mohanad</creator><creator>Yousefi, Bahram</creator><creator>Laskey, Kathryn B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201904</creationdate><title>Assessing the Performance of Panel Data Synthesis Approach</title><author>Lee, James D. ; Li, Wanru ; Matsumoto, Shou ; Ajina, Mohanad ; Yousefi, Bahram ; Laskey, Kathryn B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b039a8483c1cc761501f4b95a060028f08f7e496e49b574d1d6909e8694f4b9a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data models</topic><topic>Data Synthesis</topic><topic>Histograms</topic><topic>Inference Enterprise</topic><topic>Organizations</topic><topic>Panel Data</topic><topic>Phishing</topic><topic>Population Reconstruction</topic><topic>Predictive models</topic><topic>Sociology</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, James D.</creatorcontrib><creatorcontrib>Li, Wanru</creatorcontrib><creatorcontrib>Matsumoto, Shou</creatorcontrib><creatorcontrib>Ajina, Mohanad</creatorcontrib><creatorcontrib>Yousefi, Bahram</creatorcontrib><creatorcontrib>Laskey, Kathryn B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, James D.</au><au>Li, Wanru</au><au>Matsumoto, Shou</au><au>Ajina, Mohanad</au><au>Yousefi, Bahram</au><au>Laskey, Kathryn B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Assessing the Performance of Panel Data Synthesis Approach</atitle><btitle>2019 IEEE International Systems Conference (SysCon)</btitle><stitle>SYSCON</stitle><date>2019-04</date><risdate>2019</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2472-9647</eissn><eisbn>1538683962</eisbn><eisbn>9781538683965</eisbn><abstract>Organizations that seek to advance their ability to screen employees and mitigate risk may use Inference Enterprise Modeling (IEM) to develop models to predict the effects of proposed enhancements. However, organizations that do not have the resources to perform these tasks may outsource this work to a third-party expert. Since there exist concerns about disclosing information about individuals, sensitive details of organizations, and other private information, information shared with external parties may be aggregated to hide confidential information while providing essential data required by third parties to perform their duties. In this study, we evaluate how models constructed from aggregated data compare to models constructed using full data. We further define IEM best practices in the area of population modeling.</abstract><pub>IEEE</pub><doi>10.1109/SYSCON.2019.8836853</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2472-9647 |
ispartof | 2019 IEEE International Systems Conference (SysCon), 2019, p.1-6 |
issn | 2472-9647 |
language | eng |
recordid | cdi_ieee_primary_8836853 |
source | IEEE Xplore All Conference Series |
subjects | Data models Data Synthesis Histograms Inference Enterprise Organizations Panel Data Phishing Population Reconstruction Predictive models Sociology |
title | Assessing the Performance of Panel Data Synthesis Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Assessing%20the%20Performance%20of%20Panel%20Data%20Synthesis%20Approach&rft.btitle=2019%20IEEE%20International%20Systems%20Conference%20(SysCon)&rft.au=Lee,%20James%20D.&rft.date=2019-04&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2472-9647&rft_id=info:doi/10.1109/SYSCON.2019.8836853&rft.eisbn=1538683962&rft.eisbn_list=9781538683965&rft_dat=%3Cieee_CHZPO%3E8836853%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-b039a8483c1cc761501f4b95a060028f08f7e496e49b574d1d6909e8694f4b9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8836853&rfr_iscdi=true |