Loading…

Condition monitoring and diagnosis of rotating machinery by Gram-Charlier expansion of vibration signal

Here we present the new robust condition monitoring and diagnosis method based on the statistical hypothesis on vibration characteristics of the rotating machines in good condition. The hypothesis is that if the machine is in good condition, its probability density function of vibration signal follo...

Full description

Saved in:
Bibliographic Details
Main Authors: Toyota, T., Niho, T., Peng Chen
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 544 vol.2
container_issue
container_start_page 541
container_title
container_volume 2
creator Toyota, T.
Niho, T.
Peng Chen
description Here we present the new robust condition monitoring and diagnosis method based on the statistical hypothesis on vibration characteristics of the rotating machines in good condition. The hypothesis is that if the machine is in good condition, its probability density function of vibration signal follows the normal distribution in time domain. This method can lead to the robust failure diagnosis without any prior knowledge concerning vibration characteristics corresponding to specific failure to be detected.
doi_str_mv 10.1109/KES.2000.884106
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_884106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>884106</ieee_id><sourcerecordid>884106</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-9d6dbaddeb47bb310e0ed8b8211ebd49790546c3064d2a37d7160a28cadc77c3</originalsourceid><addsrcrecordid>eNotkFFLwzAUhQMiKLPPgk_5A603bdq0j1LmFAc-uPdx02TdlTYZSRH77-3c4MB5-Djfw2HsUUAmBDTPH-uvLAeArK6lgOqGJY2qYUlRSQB5x5IYvxcOsiyFEPesb70zNJF3fPSOJh_I9Ryd4Yawdz5S5P7Ag59wOpMRuyM5G2auZ74JOKbtEcNANnD7e0IXz6Zl8EM64L82Uu9weGC3BxyiTa69YrvX9a59S7efm_f2ZZuSUPmUNqYyGo2xWiqtCwEWrKl1nQthtZGNaqCUVVdAJU2OhTJKVIB53aHplOqKFXu6aMlauz8FGjHM-8sZxR8YtFbr</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Condition monitoring and diagnosis of rotating machinery by Gram-Charlier expansion of vibration signal</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Toyota, T. ; Niho, T. ; Peng Chen</creator><creatorcontrib>Toyota, T. ; Niho, T. ; Peng Chen</creatorcontrib><description>Here we present the new robust condition monitoring and diagnosis method based on the statistical hypothesis on vibration characteristics of the rotating machines in good condition. The hypothesis is that if the machine is in good condition, its probability density function of vibration signal follows the normal distribution in time domain. This method can lead to the robust failure diagnosis without any prior knowledge concerning vibration characteristics corresponding to specific failure to be detected.</description><identifier>ISBN: 9780780364004</identifier><identifier>ISBN: 0780364007</identifier><identifier>DOI: 10.1109/KES.2000.884106</identifier><language>eng</language><publisher>IEEE</publisher><subject>Condition monitoring ; Density functional theory ; Feature extraction ; Gaussian distribution ; Intelligent structures ; Intelligent systems ; Knowledge engineering ; Machine intelligence ; Machinery ; Rolling bearings</subject><ispartof>KES'2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516), 2000, Vol.2, p.541-544 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/884106$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/884106$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Toyota, T.</creatorcontrib><creatorcontrib>Niho, T.</creatorcontrib><creatorcontrib>Peng Chen</creatorcontrib><title>Condition monitoring and diagnosis of rotating machinery by Gram-Charlier expansion of vibration signal</title><title>KES'2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516)</title><addtitle>KES</addtitle><description>Here we present the new robust condition monitoring and diagnosis method based on the statistical hypothesis on vibration characteristics of the rotating machines in good condition. The hypothesis is that if the machine is in good condition, its probability density function of vibration signal follows the normal distribution in time domain. This method can lead to the robust failure diagnosis without any prior knowledge concerning vibration characteristics corresponding to specific failure to be detected.</description><subject>Condition monitoring</subject><subject>Density functional theory</subject><subject>Feature extraction</subject><subject>Gaussian distribution</subject><subject>Intelligent structures</subject><subject>Intelligent systems</subject><subject>Knowledge engineering</subject><subject>Machine intelligence</subject><subject>Machinery</subject><subject>Rolling bearings</subject><isbn>9780780364004</isbn><isbn>0780364007</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkFFLwzAUhQMiKLPPgk_5A603bdq0j1LmFAc-uPdx02TdlTYZSRH77-3c4MB5-Djfw2HsUUAmBDTPH-uvLAeArK6lgOqGJY2qYUlRSQB5x5IYvxcOsiyFEPesb70zNJF3fPSOJh_I9Ryd4Yawdz5S5P7Ag59wOpMRuyM5G2auZ74JOKbtEcNANnD7e0IXz6Zl8EM64L82Uu9weGC3BxyiTa69YrvX9a59S7efm_f2ZZuSUPmUNqYyGo2xWiqtCwEWrKl1nQthtZGNaqCUVVdAJU2OhTJKVIB53aHplOqKFXu6aMlauz8FGjHM-8sZxR8YtFbr</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Toyota, T.</creator><creator>Niho, T.</creator><creator>Peng Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>Condition monitoring and diagnosis of rotating machinery by Gram-Charlier expansion of vibration signal</title><author>Toyota, T. ; Niho, T. ; Peng Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-9d6dbaddeb47bb310e0ed8b8211ebd49790546c3064d2a37d7160a28cadc77c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Condition monitoring</topic><topic>Density functional theory</topic><topic>Feature extraction</topic><topic>Gaussian distribution</topic><topic>Intelligent structures</topic><topic>Intelligent systems</topic><topic>Knowledge engineering</topic><topic>Machine intelligence</topic><topic>Machinery</topic><topic>Rolling bearings</topic><toplevel>online_resources</toplevel><creatorcontrib>Toyota, T.</creatorcontrib><creatorcontrib>Niho, T.</creatorcontrib><creatorcontrib>Peng Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Toyota, T.</au><au>Niho, T.</au><au>Peng Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Condition monitoring and diagnosis of rotating machinery by Gram-Charlier expansion of vibration signal</atitle><btitle>KES'2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516)</btitle><stitle>KES</stitle><date>2000</date><risdate>2000</risdate><volume>2</volume><spage>541</spage><epage>544 vol.2</epage><pages>541-544 vol.2</pages><isbn>9780780364004</isbn><isbn>0780364007</isbn><abstract>Here we present the new robust condition monitoring and diagnosis method based on the statistical hypothesis on vibration characteristics of the rotating machines in good condition. The hypothesis is that if the machine is in good condition, its probability density function of vibration signal follows the normal distribution in time domain. This method can lead to the robust failure diagnosis without any prior knowledge concerning vibration characteristics corresponding to specific failure to be detected.</abstract><pub>IEEE</pub><doi>10.1109/KES.2000.884106</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780364004
ispartof KES'2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516), 2000, Vol.2, p.541-544 vol.2
issn
language eng
recordid cdi_ieee_primary_884106
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Condition monitoring
Density functional theory
Feature extraction
Gaussian distribution
Intelligent structures
Intelligent systems
Knowledge engineering
Machine intelligence
Machinery
Rolling bearings
title Condition monitoring and diagnosis of rotating machinery by Gram-Charlier expansion of vibration signal
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Condition%20monitoring%20and%20diagnosis%20of%20rotating%20machinery%20by%20Gram-Charlier%20expansion%20of%20vibration%20signal&rft.btitle=KES'2000.%20Fourth%20International%20Conference%20on%20Knowledge-Based%20Intelligent%20Engineering%20Systems%20and%20Allied%20Technologies.%20Proceedings%20(Cat.%20No.00TH8516)&rft.au=Toyota,%20T.&rft.date=2000&rft.volume=2&rft.spage=541&rft.epage=544%20vol.2&rft.pages=541-544%20vol.2&rft.isbn=9780780364004&rft.isbn_list=0780364007&rft_id=info:doi/10.1109/KES.2000.884106&rft_dat=%3Cieee_6IE%3E884106%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i172t-9d6dbaddeb47bb310e0ed8b8211ebd49790546c3064d2a37d7160a28cadc77c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=884106&rfr_iscdi=true