Loading…
Condition monitoring and diagnosis of rotating machinery by Gram-Charlier expansion of vibration signal
Here we present the new robust condition monitoring and diagnosis method based on the statistical hypothesis on vibration characteristics of the rotating machines in good condition. The hypothesis is that if the machine is in good condition, its probability density function of vibration signal follo...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 544 vol.2 |
container_issue | |
container_start_page | 541 |
container_title | |
container_volume | 2 |
creator | Toyota, T. Niho, T. Peng Chen |
description | Here we present the new robust condition monitoring and diagnosis method based on the statistical hypothesis on vibration characteristics of the rotating machines in good condition. The hypothesis is that if the machine is in good condition, its probability density function of vibration signal follows the normal distribution in time domain. This method can lead to the robust failure diagnosis without any prior knowledge concerning vibration characteristics corresponding to specific failure to be detected. |
doi_str_mv | 10.1109/KES.2000.884106 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_884106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>884106</ieee_id><sourcerecordid>884106</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-9d6dbaddeb47bb310e0ed8b8211ebd49790546c3064d2a37d7160a28cadc77c3</originalsourceid><addsrcrecordid>eNotkFFLwzAUhQMiKLPPgk_5A603bdq0j1LmFAc-uPdx02TdlTYZSRH77-3c4MB5-Djfw2HsUUAmBDTPH-uvLAeArK6lgOqGJY2qYUlRSQB5x5IYvxcOsiyFEPesb70zNJF3fPSOJh_I9Ryd4Yawdz5S5P7Ag59wOpMRuyM5G2auZ74JOKbtEcNANnD7e0IXz6Zl8EM64L82Uu9weGC3BxyiTa69YrvX9a59S7efm_f2ZZuSUPmUNqYyGo2xWiqtCwEWrKl1nQthtZGNaqCUVVdAJU2OhTJKVIB53aHplOqKFXu6aMlauz8FGjHM-8sZxR8YtFbr</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Condition monitoring and diagnosis of rotating machinery by Gram-Charlier expansion of vibration signal</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Toyota, T. ; Niho, T. ; Peng Chen</creator><creatorcontrib>Toyota, T. ; Niho, T. ; Peng Chen</creatorcontrib><description>Here we present the new robust condition monitoring and diagnosis method based on the statistical hypothesis on vibration characteristics of the rotating machines in good condition. The hypothesis is that if the machine is in good condition, its probability density function of vibration signal follows the normal distribution in time domain. This method can lead to the robust failure diagnosis without any prior knowledge concerning vibration characteristics corresponding to specific failure to be detected.</description><identifier>ISBN: 9780780364004</identifier><identifier>ISBN: 0780364007</identifier><identifier>DOI: 10.1109/KES.2000.884106</identifier><language>eng</language><publisher>IEEE</publisher><subject>Condition monitoring ; Density functional theory ; Feature extraction ; Gaussian distribution ; Intelligent structures ; Intelligent systems ; Knowledge engineering ; Machine intelligence ; Machinery ; Rolling bearings</subject><ispartof>KES'2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516), 2000, Vol.2, p.541-544 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/884106$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/884106$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Toyota, T.</creatorcontrib><creatorcontrib>Niho, T.</creatorcontrib><creatorcontrib>Peng Chen</creatorcontrib><title>Condition monitoring and diagnosis of rotating machinery by Gram-Charlier expansion of vibration signal</title><title>KES'2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516)</title><addtitle>KES</addtitle><description>Here we present the new robust condition monitoring and diagnosis method based on the statistical hypothesis on vibration characteristics of the rotating machines in good condition. The hypothesis is that if the machine is in good condition, its probability density function of vibration signal follows the normal distribution in time domain. This method can lead to the robust failure diagnosis without any prior knowledge concerning vibration characteristics corresponding to specific failure to be detected.</description><subject>Condition monitoring</subject><subject>Density functional theory</subject><subject>Feature extraction</subject><subject>Gaussian distribution</subject><subject>Intelligent structures</subject><subject>Intelligent systems</subject><subject>Knowledge engineering</subject><subject>Machine intelligence</subject><subject>Machinery</subject><subject>Rolling bearings</subject><isbn>9780780364004</isbn><isbn>0780364007</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkFFLwzAUhQMiKLPPgk_5A603bdq0j1LmFAc-uPdx02TdlTYZSRH77-3c4MB5-Djfw2HsUUAmBDTPH-uvLAeArK6lgOqGJY2qYUlRSQB5x5IYvxcOsiyFEPesb70zNJF3fPSOJh_I9Ryd4Yawdz5S5P7Ag59wOpMRuyM5G2auZ74JOKbtEcNANnD7e0IXz6Zl8EM64L82Uu9weGC3BxyiTa69YrvX9a59S7efm_f2ZZuSUPmUNqYyGo2xWiqtCwEWrKl1nQthtZGNaqCUVVdAJU2OhTJKVIB53aHplOqKFXu6aMlauz8FGjHM-8sZxR8YtFbr</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Toyota, T.</creator><creator>Niho, T.</creator><creator>Peng Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>Condition monitoring and diagnosis of rotating machinery by Gram-Charlier expansion of vibration signal</title><author>Toyota, T. ; Niho, T. ; Peng Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-9d6dbaddeb47bb310e0ed8b8211ebd49790546c3064d2a37d7160a28cadc77c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Condition monitoring</topic><topic>Density functional theory</topic><topic>Feature extraction</topic><topic>Gaussian distribution</topic><topic>Intelligent structures</topic><topic>Intelligent systems</topic><topic>Knowledge engineering</topic><topic>Machine intelligence</topic><topic>Machinery</topic><topic>Rolling bearings</topic><toplevel>online_resources</toplevel><creatorcontrib>Toyota, T.</creatorcontrib><creatorcontrib>Niho, T.</creatorcontrib><creatorcontrib>Peng Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Toyota, T.</au><au>Niho, T.</au><au>Peng Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Condition monitoring and diagnosis of rotating machinery by Gram-Charlier expansion of vibration signal</atitle><btitle>KES'2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516)</btitle><stitle>KES</stitle><date>2000</date><risdate>2000</risdate><volume>2</volume><spage>541</spage><epage>544 vol.2</epage><pages>541-544 vol.2</pages><isbn>9780780364004</isbn><isbn>0780364007</isbn><abstract>Here we present the new robust condition monitoring and diagnosis method based on the statistical hypothesis on vibration characteristics of the rotating machines in good condition. The hypothesis is that if the machine is in good condition, its probability density function of vibration signal follows the normal distribution in time domain. This method can lead to the robust failure diagnosis without any prior knowledge concerning vibration characteristics corresponding to specific failure to be detected.</abstract><pub>IEEE</pub><doi>10.1109/KES.2000.884106</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780364004 |
ispartof | KES'2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516), 2000, Vol.2, p.541-544 vol.2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_884106 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Condition monitoring Density functional theory Feature extraction Gaussian distribution Intelligent structures Intelligent systems Knowledge engineering Machine intelligence Machinery Rolling bearings |
title | Condition monitoring and diagnosis of rotating machinery by Gram-Charlier expansion of vibration signal |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Condition%20monitoring%20and%20diagnosis%20of%20rotating%20machinery%20by%20Gram-Charlier%20expansion%20of%20vibration%20signal&rft.btitle=KES'2000.%20Fourth%20International%20Conference%20on%20Knowledge-Based%20Intelligent%20Engineering%20Systems%20and%20Allied%20Technologies.%20Proceedings%20(Cat.%20No.00TH8516)&rft.au=Toyota,%20T.&rft.date=2000&rft.volume=2&rft.spage=541&rft.epage=544%20vol.2&rft.pages=541-544%20vol.2&rft.isbn=9780780364004&rft.isbn_list=0780364007&rft_id=info:doi/10.1109/KES.2000.884106&rft_dat=%3Cieee_6IE%3E884106%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i172t-9d6dbaddeb47bb310e0ed8b8211ebd49790546c3064d2a37d7160a28cadc77c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=884106&rfr_iscdi=true |