Loading…

Using spatial constraints for fast set-up of precise pose estimation in an industrial setting

This paper presents a method for high precision visual pose estimation along with a simple setup procedure. Robotics for industrial solutions is a rapidly growing field and these robots require very precise position information to perform manipulations. This is usually accomplished using e.g. fixtur...

Full description

Saved in:
Bibliographic Details
Main Authors: Hagelskjar, Frederik, Savarimuthu, Thiusius Rajeeth, Kruger, Norbert, Buch, Anders Glent
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c268t-fd91c750e387f2959f3fe507c767dfe00936770f1c1de1b67594c56ae6bede5f3
cites
container_end_page 1314
container_issue
container_start_page 1308
container_title
container_volume
creator Hagelskjar, Frederik
Savarimuthu, Thiusius Rajeeth
Kruger, Norbert
Buch, Anders Glent
description This paper presents a method for high precision visual pose estimation along with a simple setup procedure. Robotics for industrial solutions is a rapidly growing field and these robots require very precise position information to perform manipulations. This is usually accomplished using e.g. fixtures or feeders, both expensive hardware solutions. To enable fast changes in production, more flexible solutions are required, one possibility being visual pose estimation. Although many current pose estimation algorithms show increased performance in terms of recognition rates on public datasets, they do not focus on actual applications, neither in setup complexity or high accuracy during object localization. In contrast, our method focuses on solving a number of specific pose estimation problems in a seamless manner with a simple setup procedure. Our method relies on a number of workcell constraints and employs a novel method for automatically finding stable object poses. In addition, we use an active rendering method for refining the estimated object poses, giving a very fine localization, suitable for robotic manipulation. Experiments with current state-of-the-art 2D algorithms and our method show an average improvement from 9 mm to 0.95 mm uncertainty. The method was also used by the winning team at the 2018 World Robot Summit Assembly Challenge.
doi_str_mv 10.1109/COASE.2019.8842876
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8842876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8842876</ieee_id><sourcerecordid>8842876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-fd91c750e387f2959f3fe507c767dfe00936770f1c1de1b67594c56ae6bede5f3</originalsourceid><addsrcrecordid>eNotkM1KAzEUhaMgWGtfQDd5gRnvnTR_yzLUHyh0oV1KSTM3EqkzwyRd-Pam2M05q-_jcBh7QKgRwT6129X7um4AbW3MsjFaXbGF1QZ1YxCEVOKazRpUWBkw9pbdpfQNoMAgztjnLsX-i6fR5eiO3A99ypOLfU48DBMPLmWeKFenkQ-BjxP5mIiPQwlKOf4UbOh57Lk7Z3cq9NlTkFy89-wmuGOixaXnbPe8_mhfq8325a1dbSrfKJOr0Fn0WgIJo0NjpQ0ikATttdJdIAArlNYQ0GNHeFBa2qWXypE6UEcyiDl7_PdGItqPU9k1_e4vb4g_E15Vcw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using spatial constraints for fast set-up of precise pose estimation in an industrial setting</title><source>IEEE Xplore All Conference Series</source><creator>Hagelskjar, Frederik ; Savarimuthu, Thiusius Rajeeth ; Kruger, Norbert ; Buch, Anders Glent</creator><creatorcontrib>Hagelskjar, Frederik ; Savarimuthu, Thiusius Rajeeth ; Kruger, Norbert ; Buch, Anders Glent</creatorcontrib><description>This paper presents a method for high precision visual pose estimation along with a simple setup procedure. Robotics for industrial solutions is a rapidly growing field and these robots require very precise position information to perform manipulations. This is usually accomplished using e.g. fixtures or feeders, both expensive hardware solutions. To enable fast changes in production, more flexible solutions are required, one possibility being visual pose estimation. Although many current pose estimation algorithms show increased performance in terms of recognition rates on public datasets, they do not focus on actual applications, neither in setup complexity or high accuracy during object localization. In contrast, our method focuses on solving a number of specific pose estimation problems in a seamless manner with a simple setup procedure. Our method relies on a number of workcell constraints and employs a novel method for automatically finding stable object poses. In addition, we use an active rendering method for refining the estimated object poses, giving a very fine localization, suitable for robotic manipulation. Experiments with current state-of-the-art 2D algorithms and our method show an average improvement from 9 mm to 0.95 mm uncertainty. The method was also used by the winning team at the 2018 World Robot Summit Assembly Challenge.</description><identifier>EISSN: 2161-8089</identifier><identifier>EISBN: 9781728103563</identifier><identifier>EISBN: 1728103568</identifier><identifier>DOI: 10.1109/COASE.2019.8842876</identifier><language>eng</language><publisher>IEEE</publisher><subject>Image edge detection ; Pose estimation ; Service robots ; Solid modeling ; Three-dimensional displays ; Two dimensional displays</subject><ispartof>2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), 2019, p.1308-1314</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-fd91c750e387f2959f3fe507c767dfe00936770f1c1de1b67594c56ae6bede5f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8842876$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8842876$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hagelskjar, Frederik</creatorcontrib><creatorcontrib>Savarimuthu, Thiusius Rajeeth</creatorcontrib><creatorcontrib>Kruger, Norbert</creatorcontrib><creatorcontrib>Buch, Anders Glent</creatorcontrib><title>Using spatial constraints for fast set-up of precise pose estimation in an industrial setting</title><title>2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)</title><addtitle>COASE</addtitle><description>This paper presents a method for high precision visual pose estimation along with a simple setup procedure. Robotics for industrial solutions is a rapidly growing field and these robots require very precise position information to perform manipulations. This is usually accomplished using e.g. fixtures or feeders, both expensive hardware solutions. To enable fast changes in production, more flexible solutions are required, one possibility being visual pose estimation. Although many current pose estimation algorithms show increased performance in terms of recognition rates on public datasets, they do not focus on actual applications, neither in setup complexity or high accuracy during object localization. In contrast, our method focuses on solving a number of specific pose estimation problems in a seamless manner with a simple setup procedure. Our method relies on a number of workcell constraints and employs a novel method for automatically finding stable object poses. In addition, we use an active rendering method for refining the estimated object poses, giving a very fine localization, suitable for robotic manipulation. Experiments with current state-of-the-art 2D algorithms and our method show an average improvement from 9 mm to 0.95 mm uncertainty. The method was also used by the winning team at the 2018 World Robot Summit Assembly Challenge.</description><subject>Image edge detection</subject><subject>Pose estimation</subject><subject>Service robots</subject><subject>Solid modeling</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><issn>2161-8089</issn><isbn>9781728103563</isbn><isbn>1728103568</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1KAzEUhaMgWGtfQDd5gRnvnTR_yzLUHyh0oV1KSTM3EqkzwyRd-Pam2M05q-_jcBh7QKgRwT6129X7um4AbW3MsjFaXbGF1QZ1YxCEVOKazRpUWBkw9pbdpfQNoMAgztjnLsX-i6fR5eiO3A99ypOLfU48DBMPLmWeKFenkQ-BjxP5mIiPQwlKOf4UbOh57Lk7Z3cq9NlTkFy89-wmuGOixaXnbPe8_mhfq8325a1dbSrfKJOr0Fn0WgIJo0NjpQ0ikATttdJdIAArlNYQ0GNHeFBa2qWXypE6UEcyiDl7_PdGItqPU9k1_e4vb4g_E15Vcw</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Hagelskjar, Frederik</creator><creator>Savarimuthu, Thiusius Rajeeth</creator><creator>Kruger, Norbert</creator><creator>Buch, Anders Glent</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201908</creationdate><title>Using spatial constraints for fast set-up of precise pose estimation in an industrial setting</title><author>Hagelskjar, Frederik ; Savarimuthu, Thiusius Rajeeth ; Kruger, Norbert ; Buch, Anders Glent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-fd91c750e387f2959f3fe507c767dfe00936770f1c1de1b67594c56ae6bede5f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Image edge detection</topic><topic>Pose estimation</topic><topic>Service robots</topic><topic>Solid modeling</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Hagelskjar, Frederik</creatorcontrib><creatorcontrib>Savarimuthu, Thiusius Rajeeth</creatorcontrib><creatorcontrib>Kruger, Norbert</creatorcontrib><creatorcontrib>Buch, Anders Glent</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hagelskjar, Frederik</au><au>Savarimuthu, Thiusius Rajeeth</au><au>Kruger, Norbert</au><au>Buch, Anders Glent</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using spatial constraints for fast set-up of precise pose estimation in an industrial setting</atitle><btitle>2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)</btitle><stitle>COASE</stitle><date>2019-08</date><risdate>2019</risdate><spage>1308</spage><epage>1314</epage><pages>1308-1314</pages><eissn>2161-8089</eissn><eisbn>9781728103563</eisbn><eisbn>1728103568</eisbn><abstract>This paper presents a method for high precision visual pose estimation along with a simple setup procedure. Robotics for industrial solutions is a rapidly growing field and these robots require very precise position information to perform manipulations. This is usually accomplished using e.g. fixtures or feeders, both expensive hardware solutions. To enable fast changes in production, more flexible solutions are required, one possibility being visual pose estimation. Although many current pose estimation algorithms show increased performance in terms of recognition rates on public datasets, they do not focus on actual applications, neither in setup complexity or high accuracy during object localization. In contrast, our method focuses on solving a number of specific pose estimation problems in a seamless manner with a simple setup procedure. Our method relies on a number of workcell constraints and employs a novel method for automatically finding stable object poses. In addition, we use an active rendering method for refining the estimated object poses, giving a very fine localization, suitable for robotic manipulation. Experiments with current state-of-the-art 2D algorithms and our method show an average improvement from 9 mm to 0.95 mm uncertainty. The method was also used by the winning team at the 2018 World Robot Summit Assembly Challenge.</abstract><pub>IEEE</pub><doi>10.1109/COASE.2019.8842876</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2161-8089
ispartof 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), 2019, p.1308-1314
issn 2161-8089
language eng
recordid cdi_ieee_primary_8842876
source IEEE Xplore All Conference Series
subjects Image edge detection
Pose estimation
Service robots
Solid modeling
Three-dimensional displays
Two dimensional displays
title Using spatial constraints for fast set-up of precise pose estimation in an industrial setting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20spatial%20constraints%20for%20fast%20set-up%20of%20precise%20pose%20estimation%20in%20an%20industrial%20setting&rft.btitle=2019%20IEEE%2015th%20International%20Conference%20on%20Automation%20Science%20and%20Engineering%20(CASE)&rft.au=Hagelskjar,%20Frederik&rft.date=2019-08&rft.spage=1308&rft.epage=1314&rft.pages=1308-1314&rft.eissn=2161-8089&rft_id=info:doi/10.1109/COASE.2019.8842876&rft.eisbn=9781728103563&rft.eisbn_list=1728103568&rft_dat=%3Cieee_CHZPO%3E8842876%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-fd91c750e387f2959f3fe507c767dfe00936770f1c1de1b67594c56ae6bede5f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8842876&rfr_iscdi=true