Loading…
Joint Torque Estimation using Base Force-Torque Sensor to Facilitate Physical Human-Robot Interaction (pHRI)
To detect forces during physical Human-Robot Interaction (pHRI), a force-torque sensor (FTS) is generally attached at the wrist of a robot manipulator. Alternatively, collaborative robots can measure interaction forces via torque sensing at their joints. Yet another direction toward safe and interac...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1372 |
container_issue | |
container_start_page | 1367 |
container_title | |
container_volume | |
creator | Das, Sumit Kumar Saadatzi, Mohammad Nasser Abubakar, Shamsudeen Popa, Dan O. |
description | To detect forces during physical Human-Robot Interaction (pHRI), a force-torque sensor (FTS) is generally attached at the wrist of a robot manipulator. Alternatively, collaborative robots can measure interaction forces via torque sensing at their joints. Yet another direction toward safe and interactive robots is to cover them in smart skins with embedded tactile sensors. In this paper, we explore another idea to facilitate pHRI using an FTS placed at the base of a robot arm. The resulting base force-torque sensor (BFTS) is able to sense external forces and torques applied anywhere along the robot body. We formulate a model-free, on-line learning controller to estimate the interaction forces on the robot from the BFTS data. The controller does not require a robot dynamic model to operate, and has Lyapunov stability guarantees. We conduct experiments to validate the mean-square estimation error of our scheme using a custom 6-DOF robotic arm under real-time control. Results show that the measured torques at individual joints closely follow the estimated values. In the future, this controller can be used for adaptive pHRI with non-collaborative robots or robot manipulators. |
doi_str_mv | 10.1109/COASE.2019.8843092 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8843092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8843092</ieee_id><sourcerecordid>8843092</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-682cea4c19fb4e4e2b8a18e823b4b4688d476b02736f13d8705f8dba89100c523</originalsourceid><addsrcrecordid>eNotkMFOAjEURauJiYj8gG661MVgX9vpvC6RgGBIMIBr0paO1gxTnJYFf69RVmdzc5J7CLkDNgRg-mm8HK0nQ85ADxGlYJpfkIGuECqOwESpxCXpcVBQIEN9TW5S-mJMMQTokeY1hjbTTey-j55OUg57k0Ns6TGF9oM-m-TpNHbOF-fJ2rcpdjRHOjUuNCGb7Onb5ykFZxo6O-5NW6yijZnO2-w74_5sD4fZav54S65q0yQ_OLNP3qeTzXhWLJYv8_FoUQSoylwo5M4b6UDXVnrpuUUD6JELK61UiDtZKct4JVQNYocVK2vcWYMaGHMlF31y_-8N3vvtofv91J225zjiB_pNWMs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Joint Torque Estimation using Base Force-Torque Sensor to Facilitate Physical Human-Robot Interaction (pHRI)</title><source>IEEE Xplore All Conference Series</source><creator>Das, Sumit Kumar ; Saadatzi, Mohammad Nasser ; Abubakar, Shamsudeen ; Popa, Dan O.</creator><creatorcontrib>Das, Sumit Kumar ; Saadatzi, Mohammad Nasser ; Abubakar, Shamsudeen ; Popa, Dan O.</creatorcontrib><description>To detect forces during physical Human-Robot Interaction (pHRI), a force-torque sensor (FTS) is generally attached at the wrist of a robot manipulator. Alternatively, collaborative robots can measure interaction forces via torque sensing at their joints. Yet another direction toward safe and interactive robots is to cover them in smart skins with embedded tactile sensors. In this paper, we explore another idea to facilitate pHRI using an FTS placed at the base of a robot arm. The resulting base force-torque sensor (BFTS) is able to sense external forces and torques applied anywhere along the robot body. We formulate a model-free, on-line learning controller to estimate the interaction forces on the robot from the BFTS data. The controller does not require a robot dynamic model to operate, and has Lyapunov stability guarantees. We conduct experiments to validate the mean-square estimation error of our scheme using a custom 6-DOF robotic arm under real-time control. Results show that the measured torques at individual joints closely follow the estimated values. In the future, this controller can be used for adaptive pHRI with non-collaborative robots or robot manipulators.</description><identifier>EISSN: 2161-8089</identifier><identifier>EISBN: 9781728103563</identifier><identifier>EISBN: 1728103568</identifier><identifier>DOI: 10.1109/COASE.2019.8843092</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Collision avoidance ; Gravity ; Manipulator dynamics ; Robot sensing systems</subject><ispartof>2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), 2019, p.1367-1372</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8843092$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8843092$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Das, Sumit Kumar</creatorcontrib><creatorcontrib>Saadatzi, Mohammad Nasser</creatorcontrib><creatorcontrib>Abubakar, Shamsudeen</creatorcontrib><creatorcontrib>Popa, Dan O.</creatorcontrib><title>Joint Torque Estimation using Base Force-Torque Sensor to Facilitate Physical Human-Robot Interaction (pHRI)</title><title>2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)</title><addtitle>COASE</addtitle><description>To detect forces during physical Human-Robot Interaction (pHRI), a force-torque sensor (FTS) is generally attached at the wrist of a robot manipulator. Alternatively, collaborative robots can measure interaction forces via torque sensing at their joints. Yet another direction toward safe and interactive robots is to cover them in smart skins with embedded tactile sensors. In this paper, we explore another idea to facilitate pHRI using an FTS placed at the base of a robot arm. The resulting base force-torque sensor (BFTS) is able to sense external forces and torques applied anywhere along the robot body. We formulate a model-free, on-line learning controller to estimate the interaction forces on the robot from the BFTS data. The controller does not require a robot dynamic model to operate, and has Lyapunov stability guarantees. We conduct experiments to validate the mean-square estimation error of our scheme using a custom 6-DOF robotic arm under real-time control. Results show that the measured torques at individual joints closely follow the estimated values. In the future, this controller can be used for adaptive pHRI with non-collaborative robots or robot manipulators.</description><subject>Artificial neural networks</subject><subject>Collision avoidance</subject><subject>Gravity</subject><subject>Manipulator dynamics</subject><subject>Robot sensing systems</subject><issn>2161-8089</issn><isbn>9781728103563</isbn><isbn>1728103568</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMFOAjEURauJiYj8gG661MVgX9vpvC6RgGBIMIBr0paO1gxTnJYFf69RVmdzc5J7CLkDNgRg-mm8HK0nQ85ADxGlYJpfkIGuECqOwESpxCXpcVBQIEN9TW5S-mJMMQTokeY1hjbTTey-j55OUg57k0Ns6TGF9oM-m-TpNHbOF-fJ2rcpdjRHOjUuNCGb7Onb5ykFZxo6O-5NW6yijZnO2-w74_5sD4fZav54S65q0yQ_OLNP3qeTzXhWLJYv8_FoUQSoylwo5M4b6UDXVnrpuUUD6JELK61UiDtZKct4JVQNYocVK2vcWYMaGHMlF31y_-8N3vvtofv91J225zjiB_pNWMs</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Das, Sumit Kumar</creator><creator>Saadatzi, Mohammad Nasser</creator><creator>Abubakar, Shamsudeen</creator><creator>Popa, Dan O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201908</creationdate><title>Joint Torque Estimation using Base Force-Torque Sensor to Facilitate Physical Human-Robot Interaction (pHRI)</title><author>Das, Sumit Kumar ; Saadatzi, Mohammad Nasser ; Abubakar, Shamsudeen ; Popa, Dan O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-682cea4c19fb4e4e2b8a18e823b4b4688d476b02736f13d8705f8dba89100c523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Collision avoidance</topic><topic>Gravity</topic><topic>Manipulator dynamics</topic><topic>Robot sensing systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Das, Sumit Kumar</creatorcontrib><creatorcontrib>Saadatzi, Mohammad Nasser</creatorcontrib><creatorcontrib>Abubakar, Shamsudeen</creatorcontrib><creatorcontrib>Popa, Dan O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Das, Sumit Kumar</au><au>Saadatzi, Mohammad Nasser</au><au>Abubakar, Shamsudeen</au><au>Popa, Dan O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Joint Torque Estimation using Base Force-Torque Sensor to Facilitate Physical Human-Robot Interaction (pHRI)</atitle><btitle>2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)</btitle><stitle>COASE</stitle><date>2019-08</date><risdate>2019</risdate><spage>1367</spage><epage>1372</epage><pages>1367-1372</pages><eissn>2161-8089</eissn><eisbn>9781728103563</eisbn><eisbn>1728103568</eisbn><abstract>To detect forces during physical Human-Robot Interaction (pHRI), a force-torque sensor (FTS) is generally attached at the wrist of a robot manipulator. Alternatively, collaborative robots can measure interaction forces via torque sensing at their joints. Yet another direction toward safe and interactive robots is to cover them in smart skins with embedded tactile sensors. In this paper, we explore another idea to facilitate pHRI using an FTS placed at the base of a robot arm. The resulting base force-torque sensor (BFTS) is able to sense external forces and torques applied anywhere along the robot body. We formulate a model-free, on-line learning controller to estimate the interaction forces on the robot from the BFTS data. The controller does not require a robot dynamic model to operate, and has Lyapunov stability guarantees. We conduct experiments to validate the mean-square estimation error of our scheme using a custom 6-DOF robotic arm under real-time control. Results show that the measured torques at individual joints closely follow the estimated values. In the future, this controller can be used for adaptive pHRI with non-collaborative robots or robot manipulators.</abstract><pub>IEEE</pub><doi>10.1109/COASE.2019.8843092</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2161-8089 |
ispartof | 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), 2019, p.1367-1372 |
issn | 2161-8089 |
language | eng |
recordid | cdi_ieee_primary_8843092 |
source | IEEE Xplore All Conference Series |
subjects | Artificial neural networks Collision avoidance Gravity Manipulator dynamics Robot sensing systems |
title | Joint Torque Estimation using Base Force-Torque Sensor to Facilitate Physical Human-Robot Interaction (pHRI) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Joint%20Torque%20Estimation%20using%20Base%20Force-Torque%20Sensor%20to%20Facilitate%20Physical%20Human-Robot%20Interaction%20(pHRI)&rft.btitle=2019%20IEEE%2015th%20International%20Conference%20on%20Automation%20Science%20and%20Engineering%20(CASE)&rft.au=Das,%20Sumit%20Kumar&rft.date=2019-08&rft.spage=1367&rft.epage=1372&rft.pages=1367-1372&rft.eissn=2161-8089&rft_id=info:doi/10.1109/COASE.2019.8843092&rft.eisbn=9781728103563&rft.eisbn_list=1728103568&rft_dat=%3Cieee_CHZPO%3E8843092%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-682cea4c19fb4e4e2b8a18e823b4b4688d476b02736f13d8705f8dba89100c523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8843092&rfr_iscdi=true |