Loading…

Joint Torque Estimation using Base Force-Torque Sensor to Facilitate Physical Human-Robot Interaction (pHRI)

To detect forces during physical Human-Robot Interaction (pHRI), a force-torque sensor (FTS) is generally attached at the wrist of a robot manipulator. Alternatively, collaborative robots can measure interaction forces via torque sensing at their joints. Yet another direction toward safe and interac...

Full description

Saved in:
Bibliographic Details
Main Authors: Das, Sumit Kumar, Saadatzi, Mohammad Nasser, Abubakar, Shamsudeen, Popa, Dan O.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1372
container_issue
container_start_page 1367
container_title
container_volume
creator Das, Sumit Kumar
Saadatzi, Mohammad Nasser
Abubakar, Shamsudeen
Popa, Dan O.
description To detect forces during physical Human-Robot Interaction (pHRI), a force-torque sensor (FTS) is generally attached at the wrist of a robot manipulator. Alternatively, collaborative robots can measure interaction forces via torque sensing at their joints. Yet another direction toward safe and interactive robots is to cover them in smart skins with embedded tactile sensors. In this paper, we explore another idea to facilitate pHRI using an FTS placed at the base of a robot arm. The resulting base force-torque sensor (BFTS) is able to sense external forces and torques applied anywhere along the robot body. We formulate a model-free, on-line learning controller to estimate the interaction forces on the robot from the BFTS data. The controller does not require a robot dynamic model to operate, and has Lyapunov stability guarantees. We conduct experiments to validate the mean-square estimation error of our scheme using a custom 6-DOF robotic arm under real-time control. Results show that the measured torques at individual joints closely follow the estimated values. In the future, this controller can be used for adaptive pHRI with non-collaborative robots or robot manipulators.
doi_str_mv 10.1109/COASE.2019.8843092
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8843092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8843092</ieee_id><sourcerecordid>8843092</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-682cea4c19fb4e4e2b8a18e823b4b4688d476b02736f13d8705f8dba89100c523</originalsourceid><addsrcrecordid>eNotkMFOAjEURauJiYj8gG661MVgX9vpvC6RgGBIMIBr0paO1gxTnJYFf69RVmdzc5J7CLkDNgRg-mm8HK0nQ85ADxGlYJpfkIGuECqOwESpxCXpcVBQIEN9TW5S-mJMMQTokeY1hjbTTey-j55OUg57k0Ns6TGF9oM-m-TpNHbOF-fJ2rcpdjRHOjUuNCGb7Onb5ykFZxo6O-5NW6yijZnO2-w74_5sD4fZav54S65q0yQ_OLNP3qeTzXhWLJYv8_FoUQSoylwo5M4b6UDXVnrpuUUD6JELK61UiDtZKct4JVQNYocVK2vcWYMaGHMlF31y_-8N3vvtofv91J225zjiB_pNWMs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Joint Torque Estimation using Base Force-Torque Sensor to Facilitate Physical Human-Robot Interaction (pHRI)</title><source>IEEE Xplore All Conference Series</source><creator>Das, Sumit Kumar ; Saadatzi, Mohammad Nasser ; Abubakar, Shamsudeen ; Popa, Dan O.</creator><creatorcontrib>Das, Sumit Kumar ; Saadatzi, Mohammad Nasser ; Abubakar, Shamsudeen ; Popa, Dan O.</creatorcontrib><description>To detect forces during physical Human-Robot Interaction (pHRI), a force-torque sensor (FTS) is generally attached at the wrist of a robot manipulator. Alternatively, collaborative robots can measure interaction forces via torque sensing at their joints. Yet another direction toward safe and interactive robots is to cover them in smart skins with embedded tactile sensors. In this paper, we explore another idea to facilitate pHRI using an FTS placed at the base of a robot arm. The resulting base force-torque sensor (BFTS) is able to sense external forces and torques applied anywhere along the robot body. We formulate a model-free, on-line learning controller to estimate the interaction forces on the robot from the BFTS data. The controller does not require a robot dynamic model to operate, and has Lyapunov stability guarantees. We conduct experiments to validate the mean-square estimation error of our scheme using a custom 6-DOF robotic arm under real-time control. Results show that the measured torques at individual joints closely follow the estimated values. In the future, this controller can be used for adaptive pHRI with non-collaborative robots or robot manipulators.</description><identifier>EISSN: 2161-8089</identifier><identifier>EISBN: 9781728103563</identifier><identifier>EISBN: 1728103568</identifier><identifier>DOI: 10.1109/COASE.2019.8843092</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Collision avoidance ; Gravity ; Manipulator dynamics ; Robot sensing systems</subject><ispartof>2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), 2019, p.1367-1372</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8843092$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8843092$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Das, Sumit Kumar</creatorcontrib><creatorcontrib>Saadatzi, Mohammad Nasser</creatorcontrib><creatorcontrib>Abubakar, Shamsudeen</creatorcontrib><creatorcontrib>Popa, Dan O.</creatorcontrib><title>Joint Torque Estimation using Base Force-Torque Sensor to Facilitate Physical Human-Robot Interaction (pHRI)</title><title>2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)</title><addtitle>COASE</addtitle><description>To detect forces during physical Human-Robot Interaction (pHRI), a force-torque sensor (FTS) is generally attached at the wrist of a robot manipulator. Alternatively, collaborative robots can measure interaction forces via torque sensing at their joints. Yet another direction toward safe and interactive robots is to cover them in smart skins with embedded tactile sensors. In this paper, we explore another idea to facilitate pHRI using an FTS placed at the base of a robot arm. The resulting base force-torque sensor (BFTS) is able to sense external forces and torques applied anywhere along the robot body. We formulate a model-free, on-line learning controller to estimate the interaction forces on the robot from the BFTS data. The controller does not require a robot dynamic model to operate, and has Lyapunov stability guarantees. We conduct experiments to validate the mean-square estimation error of our scheme using a custom 6-DOF robotic arm under real-time control. Results show that the measured torques at individual joints closely follow the estimated values. In the future, this controller can be used for adaptive pHRI with non-collaborative robots or robot manipulators.</description><subject>Artificial neural networks</subject><subject>Collision avoidance</subject><subject>Gravity</subject><subject>Manipulator dynamics</subject><subject>Robot sensing systems</subject><issn>2161-8089</issn><isbn>9781728103563</isbn><isbn>1728103568</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMFOAjEURauJiYj8gG661MVgX9vpvC6RgGBIMIBr0paO1gxTnJYFf69RVmdzc5J7CLkDNgRg-mm8HK0nQ85ADxGlYJpfkIGuECqOwESpxCXpcVBQIEN9TW5S-mJMMQTokeY1hjbTTey-j55OUg57k0Ns6TGF9oM-m-TpNHbOF-fJ2rcpdjRHOjUuNCGb7Onb5ykFZxo6O-5NW6yijZnO2-w74_5sD4fZav54S65q0yQ_OLNP3qeTzXhWLJYv8_FoUQSoylwo5M4b6UDXVnrpuUUD6JELK61UiDtZKct4JVQNYocVK2vcWYMaGHMlF31y_-8N3vvtofv91J225zjiB_pNWMs</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Das, Sumit Kumar</creator><creator>Saadatzi, Mohammad Nasser</creator><creator>Abubakar, Shamsudeen</creator><creator>Popa, Dan O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201908</creationdate><title>Joint Torque Estimation using Base Force-Torque Sensor to Facilitate Physical Human-Robot Interaction (pHRI)</title><author>Das, Sumit Kumar ; Saadatzi, Mohammad Nasser ; Abubakar, Shamsudeen ; Popa, Dan O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-682cea4c19fb4e4e2b8a18e823b4b4688d476b02736f13d8705f8dba89100c523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Collision avoidance</topic><topic>Gravity</topic><topic>Manipulator dynamics</topic><topic>Robot sensing systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Das, Sumit Kumar</creatorcontrib><creatorcontrib>Saadatzi, Mohammad Nasser</creatorcontrib><creatorcontrib>Abubakar, Shamsudeen</creatorcontrib><creatorcontrib>Popa, Dan O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Das, Sumit Kumar</au><au>Saadatzi, Mohammad Nasser</au><au>Abubakar, Shamsudeen</au><au>Popa, Dan O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Joint Torque Estimation using Base Force-Torque Sensor to Facilitate Physical Human-Robot Interaction (pHRI)</atitle><btitle>2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)</btitle><stitle>COASE</stitle><date>2019-08</date><risdate>2019</risdate><spage>1367</spage><epage>1372</epage><pages>1367-1372</pages><eissn>2161-8089</eissn><eisbn>9781728103563</eisbn><eisbn>1728103568</eisbn><abstract>To detect forces during physical Human-Robot Interaction (pHRI), a force-torque sensor (FTS) is generally attached at the wrist of a robot manipulator. Alternatively, collaborative robots can measure interaction forces via torque sensing at their joints. Yet another direction toward safe and interactive robots is to cover them in smart skins with embedded tactile sensors. In this paper, we explore another idea to facilitate pHRI using an FTS placed at the base of a robot arm. The resulting base force-torque sensor (BFTS) is able to sense external forces and torques applied anywhere along the robot body. We formulate a model-free, on-line learning controller to estimate the interaction forces on the robot from the BFTS data. The controller does not require a robot dynamic model to operate, and has Lyapunov stability guarantees. We conduct experiments to validate the mean-square estimation error of our scheme using a custom 6-DOF robotic arm under real-time control. Results show that the measured torques at individual joints closely follow the estimated values. In the future, this controller can be used for adaptive pHRI with non-collaborative robots or robot manipulators.</abstract><pub>IEEE</pub><doi>10.1109/COASE.2019.8843092</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2161-8089
ispartof 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), 2019, p.1367-1372
issn 2161-8089
language eng
recordid cdi_ieee_primary_8843092
source IEEE Xplore All Conference Series
subjects Artificial neural networks
Collision avoidance
Gravity
Manipulator dynamics
Robot sensing systems
title Joint Torque Estimation using Base Force-Torque Sensor to Facilitate Physical Human-Robot Interaction (pHRI)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Joint%20Torque%20Estimation%20using%20Base%20Force-Torque%20Sensor%20to%20Facilitate%20Physical%20Human-Robot%20Interaction%20(pHRI)&rft.btitle=2019%20IEEE%2015th%20International%20Conference%20on%20Automation%20Science%20and%20Engineering%20(CASE)&rft.au=Das,%20Sumit%20Kumar&rft.date=2019-08&rft.spage=1367&rft.epage=1372&rft.pages=1367-1372&rft.eissn=2161-8089&rft_id=info:doi/10.1109/COASE.2019.8843092&rft.eisbn=9781728103563&rft.eisbn_list=1728103568&rft_dat=%3Cieee_CHZPO%3E8843092%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-682cea4c19fb4e4e2b8a18e823b4b4688d476b02736f13d8705f8dba89100c523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8843092&rfr_iscdi=true