Loading…

Automating Planar Object Singulation by Linear Pushing with Single-point and Multi-point Contacts

Singulation is useful for manufacturing, logistics, and service applications; we consider the problem in a planar setting. We propose a novel O(n(n + v)) linear push policy (n denotes the number of objects, v denotes the maximum number of vertices per object), ClusterPush, that can be efficiently co...

Full description

Saved in:
Bibliographic Details
Main Authors: Dong, Zisu, Krishnan, Sanjay, Dolasia, Sona, Balakrishna, Ashwin, Danielczuk, Michael, Goldberg, Ken
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1436
container_issue
container_start_page 1429
container_title
container_volume
creator Dong, Zisu
Krishnan, Sanjay
Dolasia, Sona
Balakrishna, Ashwin
Danielczuk, Michael
Goldberg, Ken
description Singulation is useful for manufacturing, logistics, and service applications; we consider the problem in a planar setting. We propose a novel O(n(n + v)) linear push policy (n denotes the number of objects, v denotes the maximum number of vertices per object), ClusterPush, that can be efficiently computed using clustering. To evaluate the policy, we define singulation distance as the average pairwise distance of polygon centroids given random arrangements of 2D polygonal objects on a surface, and seek pushing policies that can maximize singulation distance. When compared with a brute force evaluation of all candidate pushes in Box2D simulator using 50,000 pushing scenarios, ClusterPush achieves 70% of the singulation distance achieved using brute force and is 2000x faster. ClusterPush also improves on previous pushing policies and can be used for multi-point pushes with two-point and edge (infinite-point) contacts. Compared with pushes with single-point contacts using ClusterPush, pushes with two-point and edge contacts improve singulation by 7% and 13% respectively. In physical experiments conducted with an ABB YuMi robot on 40 sets of 3-7 blocks, ClusterPush increases singulation distance by 15-30%, outperforming the next best policy by 24% on average. Data and code are available at https://github.com/Jekyll1021/MultiPointPushing.
doi_str_mv 10.1109/COASE.2019.8843111
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8843111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8843111</ieee_id><sourcerecordid>8843111</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-58e9181f63be4a84066ef3f8fab60d35da03d6c58b7a440a0b22fc0f76645acb3</originalsourceid><addsrcrecordid>eNotkM1OwzAQhA0SEqX0BeDiF0jZjR3HOVZR-ZGCUqlwrtaJTV2lTtU4Qn17CvQ0mvlGcxjGHhDmiFA8lfVivZyngMVcaykQ8YrNilxjnmoEkSlxzSYpKkw06OKW3Q3DDkCBRpwwWoyx31P04YuvOgp05LXZ2Sby9TkauzPpAzcnXvlgz3A1Dtvf7reP279KZ5ND70PkFFr-PnbRX3zZh0hNHO7ZjaNusLOLTtnn8_KjfE2q-uWtXFSJxzyLSaZtgRqdEsZK0hKUsk447cgoaEXWEohWNZk2OUkJBCZNXQMuV0pm1BgxZY__u95auzkc_Z6Op83lEfEDLUZWOw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automating Planar Object Singulation by Linear Pushing with Single-point and Multi-point Contacts</title><source>IEEE Xplore All Conference Series</source><creator>Dong, Zisu ; Krishnan, Sanjay ; Dolasia, Sona ; Balakrishna, Ashwin ; Danielczuk, Michael ; Goldberg, Ken</creator><creatorcontrib>Dong, Zisu ; Krishnan, Sanjay ; Dolasia, Sona ; Balakrishna, Ashwin ; Danielczuk, Michael ; Goldberg, Ken</creatorcontrib><description>Singulation is useful for manufacturing, logistics, and service applications; we consider the problem in a planar setting. We propose a novel O(n(n + v)) linear push policy (n denotes the number of objects, v denotes the maximum number of vertices per object), ClusterPush, that can be efficiently computed using clustering. To evaluate the policy, we define singulation distance as the average pairwise distance of polygon centroids given random arrangements of 2D polygonal objects on a surface, and seek pushing policies that can maximize singulation distance. When compared with a brute force evaluation of all candidate pushes in Box2D simulator using 50,000 pushing scenarios, ClusterPush achieves 70% of the singulation distance achieved using brute force and is 2000x faster. ClusterPush also improves on previous pushing policies and can be used for multi-point pushes with two-point and edge (infinite-point) contacts. Compared with pushes with single-point contacts using ClusterPush, pushes with two-point and edge contacts improve singulation by 7% and 13% respectively. In physical experiments conducted with an ABB YuMi robot on 40 sets of 3-7 blocks, ClusterPush increases singulation distance by 15-30%, outperforming the next best policy by 24% on average. Data and code are available at https://github.com/Jekyll1021/MultiPointPushing.</description><identifier>EISSN: 2161-8089</identifier><identifier>EISBN: 9781728103563</identifier><identifier>EISBN: 1728103568</identifier><identifier>DOI: 10.1109/COASE.2019.8843111</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Friction ; Grippers ; Manufacturing ; Robots ; Trajectory ; Two dimensional displays</subject><ispartof>2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), 2019, p.1429-1436</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8843111$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8843111$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong, Zisu</creatorcontrib><creatorcontrib>Krishnan, Sanjay</creatorcontrib><creatorcontrib>Dolasia, Sona</creatorcontrib><creatorcontrib>Balakrishna, Ashwin</creatorcontrib><creatorcontrib>Danielczuk, Michael</creatorcontrib><creatorcontrib>Goldberg, Ken</creatorcontrib><title>Automating Planar Object Singulation by Linear Pushing with Single-point and Multi-point Contacts</title><title>2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)</title><addtitle>COASE</addtitle><description>Singulation is useful for manufacturing, logistics, and service applications; we consider the problem in a planar setting. We propose a novel O(n(n + v)) linear push policy (n denotes the number of objects, v denotes the maximum number of vertices per object), ClusterPush, that can be efficiently computed using clustering. To evaluate the policy, we define singulation distance as the average pairwise distance of polygon centroids given random arrangements of 2D polygonal objects on a surface, and seek pushing policies that can maximize singulation distance. When compared with a brute force evaluation of all candidate pushes in Box2D simulator using 50,000 pushing scenarios, ClusterPush achieves 70% of the singulation distance achieved using brute force and is 2000x faster. ClusterPush also improves on previous pushing policies and can be used for multi-point pushes with two-point and edge (infinite-point) contacts. Compared with pushes with single-point contacts using ClusterPush, pushes with two-point and edge contacts improve singulation by 7% and 13% respectively. In physical experiments conducted with an ABB YuMi robot on 40 sets of 3-7 blocks, ClusterPush increases singulation distance by 15-30%, outperforming the next best policy by 24% on average. Data and code are available at https://github.com/Jekyll1021/MultiPointPushing.</description><subject>Computational modeling</subject><subject>Friction</subject><subject>Grippers</subject><subject>Manufacturing</subject><subject>Robots</subject><subject>Trajectory</subject><subject>Two dimensional displays</subject><issn>2161-8089</issn><isbn>9781728103563</isbn><isbn>1728103568</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1OwzAQhA0SEqX0BeDiF0jZjR3HOVZR-ZGCUqlwrtaJTV2lTtU4Qn17CvQ0mvlGcxjGHhDmiFA8lfVivZyngMVcaykQ8YrNilxjnmoEkSlxzSYpKkw06OKW3Q3DDkCBRpwwWoyx31P04YuvOgp05LXZ2Sby9TkauzPpAzcnXvlgz3A1Dtvf7reP279KZ5ND70PkFFr-PnbRX3zZh0hNHO7ZjaNusLOLTtnn8_KjfE2q-uWtXFSJxzyLSaZtgRqdEsZK0hKUsk447cgoaEXWEohWNZk2OUkJBCZNXQMuV0pm1BgxZY__u95auzkc_Z6Op83lEfEDLUZWOw</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Dong, Zisu</creator><creator>Krishnan, Sanjay</creator><creator>Dolasia, Sona</creator><creator>Balakrishna, Ashwin</creator><creator>Danielczuk, Michael</creator><creator>Goldberg, Ken</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201908</creationdate><title>Automating Planar Object Singulation by Linear Pushing with Single-point and Multi-point Contacts</title><author>Dong, Zisu ; Krishnan, Sanjay ; Dolasia, Sona ; Balakrishna, Ashwin ; Danielczuk, Michael ; Goldberg, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-58e9181f63be4a84066ef3f8fab60d35da03d6c58b7a440a0b22fc0f76645acb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational modeling</topic><topic>Friction</topic><topic>Grippers</topic><topic>Manufacturing</topic><topic>Robots</topic><topic>Trajectory</topic><topic>Two dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Dong, Zisu</creatorcontrib><creatorcontrib>Krishnan, Sanjay</creatorcontrib><creatorcontrib>Dolasia, Sona</creatorcontrib><creatorcontrib>Balakrishna, Ashwin</creatorcontrib><creatorcontrib>Danielczuk, Michael</creatorcontrib><creatorcontrib>Goldberg, Ken</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Zisu</au><au>Krishnan, Sanjay</au><au>Dolasia, Sona</au><au>Balakrishna, Ashwin</au><au>Danielczuk, Michael</au><au>Goldberg, Ken</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automating Planar Object Singulation by Linear Pushing with Single-point and Multi-point Contacts</atitle><btitle>2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)</btitle><stitle>COASE</stitle><date>2019-08</date><risdate>2019</risdate><spage>1429</spage><epage>1436</epage><pages>1429-1436</pages><eissn>2161-8089</eissn><eisbn>9781728103563</eisbn><eisbn>1728103568</eisbn><abstract>Singulation is useful for manufacturing, logistics, and service applications; we consider the problem in a planar setting. We propose a novel O(n(n + v)) linear push policy (n denotes the number of objects, v denotes the maximum number of vertices per object), ClusterPush, that can be efficiently computed using clustering. To evaluate the policy, we define singulation distance as the average pairwise distance of polygon centroids given random arrangements of 2D polygonal objects on a surface, and seek pushing policies that can maximize singulation distance. When compared with a brute force evaluation of all candidate pushes in Box2D simulator using 50,000 pushing scenarios, ClusterPush achieves 70% of the singulation distance achieved using brute force and is 2000x faster. ClusterPush also improves on previous pushing policies and can be used for multi-point pushes with two-point and edge (infinite-point) contacts. Compared with pushes with single-point contacts using ClusterPush, pushes with two-point and edge contacts improve singulation by 7% and 13% respectively. In physical experiments conducted with an ABB YuMi robot on 40 sets of 3-7 blocks, ClusterPush increases singulation distance by 15-30%, outperforming the next best policy by 24% on average. Data and code are available at https://github.com/Jekyll1021/MultiPointPushing.</abstract><pub>IEEE</pub><doi>10.1109/COASE.2019.8843111</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2161-8089
ispartof 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), 2019, p.1429-1436
issn 2161-8089
language eng
recordid cdi_ieee_primary_8843111
source IEEE Xplore All Conference Series
subjects Computational modeling
Friction
Grippers
Manufacturing
Robots
Trajectory
Two dimensional displays
title Automating Planar Object Singulation by Linear Pushing with Single-point and Multi-point Contacts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automating%20Planar%20Object%20Singulation%20by%20Linear%20Pushing%20with%20Single-point%20and%20Multi-point%20Contacts&rft.btitle=2019%20IEEE%2015th%20International%20Conference%20on%20Automation%20Science%20and%20Engineering%20(CASE)&rft.au=Dong,%20Zisu&rft.date=2019-08&rft.spage=1429&rft.epage=1436&rft.pages=1429-1436&rft.eissn=2161-8089&rft_id=info:doi/10.1109/COASE.2019.8843111&rft.eisbn=9781728103563&rft.eisbn_list=1728103568&rft_dat=%3Cieee_CHZPO%3E8843111%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-58e9181f63be4a84066ef3f8fab60d35da03d6c58b7a440a0b22fc0f76645acb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8843111&rfr_iscdi=true