Loading…
Automating Planar Object Singulation by Linear Pushing with Single-point and Multi-point Contacts
Singulation is useful for manufacturing, logistics, and service applications; we consider the problem in a planar setting. We propose a novel O(n(n + v)) linear push policy (n denotes the number of objects, v denotes the maximum number of vertices per object), ClusterPush, that can be efficiently co...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1436 |
container_issue | |
container_start_page | 1429 |
container_title | |
container_volume | |
creator | Dong, Zisu Krishnan, Sanjay Dolasia, Sona Balakrishna, Ashwin Danielczuk, Michael Goldberg, Ken |
description | Singulation is useful for manufacturing, logistics, and service applications; we consider the problem in a planar setting. We propose a novel O(n(n + v)) linear push policy (n denotes the number of objects, v denotes the maximum number of vertices per object), ClusterPush, that can be efficiently computed using clustering. To evaluate the policy, we define singulation distance as the average pairwise distance of polygon centroids given random arrangements of 2D polygonal objects on a surface, and seek pushing policies that can maximize singulation distance. When compared with a brute force evaluation of all candidate pushes in Box2D simulator using 50,000 pushing scenarios, ClusterPush achieves 70% of the singulation distance achieved using brute force and is 2000x faster. ClusterPush also improves on previous pushing policies and can be used for multi-point pushes with two-point and edge (infinite-point) contacts. Compared with pushes with single-point contacts using ClusterPush, pushes with two-point and edge contacts improve singulation by 7% and 13% respectively. In physical experiments conducted with an ABB YuMi robot on 40 sets of 3-7 blocks, ClusterPush increases singulation distance by 15-30%, outperforming the next best policy by 24% on average. Data and code are available at https://github.com/Jekyll1021/MultiPointPushing. |
doi_str_mv | 10.1109/COASE.2019.8843111 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8843111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8843111</ieee_id><sourcerecordid>8843111</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-58e9181f63be4a84066ef3f8fab60d35da03d6c58b7a440a0b22fc0f76645acb3</originalsourceid><addsrcrecordid>eNotkM1OwzAQhA0SEqX0BeDiF0jZjR3HOVZR-ZGCUqlwrtaJTV2lTtU4Qn17CvQ0mvlGcxjGHhDmiFA8lfVivZyngMVcaykQ8YrNilxjnmoEkSlxzSYpKkw06OKW3Q3DDkCBRpwwWoyx31P04YuvOgp05LXZ2Sby9TkauzPpAzcnXvlgz3A1Dtvf7reP279KZ5ND70PkFFr-PnbRX3zZh0hNHO7ZjaNusLOLTtnn8_KjfE2q-uWtXFSJxzyLSaZtgRqdEsZK0hKUsk447cgoaEXWEohWNZk2OUkJBCZNXQMuV0pm1BgxZY__u95auzkc_Z6Op83lEfEDLUZWOw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automating Planar Object Singulation by Linear Pushing with Single-point and Multi-point Contacts</title><source>IEEE Xplore All Conference Series</source><creator>Dong, Zisu ; Krishnan, Sanjay ; Dolasia, Sona ; Balakrishna, Ashwin ; Danielczuk, Michael ; Goldberg, Ken</creator><creatorcontrib>Dong, Zisu ; Krishnan, Sanjay ; Dolasia, Sona ; Balakrishna, Ashwin ; Danielczuk, Michael ; Goldberg, Ken</creatorcontrib><description>Singulation is useful for manufacturing, logistics, and service applications; we consider the problem in a planar setting. We propose a novel O(n(n + v)) linear push policy (n denotes the number of objects, v denotes the maximum number of vertices per object), ClusterPush, that can be efficiently computed using clustering. To evaluate the policy, we define singulation distance as the average pairwise distance of polygon centroids given random arrangements of 2D polygonal objects on a surface, and seek pushing policies that can maximize singulation distance. When compared with a brute force evaluation of all candidate pushes in Box2D simulator using 50,000 pushing scenarios, ClusterPush achieves 70% of the singulation distance achieved using brute force and is 2000x faster. ClusterPush also improves on previous pushing policies and can be used for multi-point pushes with two-point and edge (infinite-point) contacts. Compared with pushes with single-point contacts using ClusterPush, pushes with two-point and edge contacts improve singulation by 7% and 13% respectively. In physical experiments conducted with an ABB YuMi robot on 40 sets of 3-7 blocks, ClusterPush increases singulation distance by 15-30%, outperforming the next best policy by 24% on average. Data and code are available at https://github.com/Jekyll1021/MultiPointPushing.</description><identifier>EISSN: 2161-8089</identifier><identifier>EISBN: 9781728103563</identifier><identifier>EISBN: 1728103568</identifier><identifier>DOI: 10.1109/COASE.2019.8843111</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Friction ; Grippers ; Manufacturing ; Robots ; Trajectory ; Two dimensional displays</subject><ispartof>2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), 2019, p.1429-1436</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8843111$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8843111$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong, Zisu</creatorcontrib><creatorcontrib>Krishnan, Sanjay</creatorcontrib><creatorcontrib>Dolasia, Sona</creatorcontrib><creatorcontrib>Balakrishna, Ashwin</creatorcontrib><creatorcontrib>Danielczuk, Michael</creatorcontrib><creatorcontrib>Goldberg, Ken</creatorcontrib><title>Automating Planar Object Singulation by Linear Pushing with Single-point and Multi-point Contacts</title><title>2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)</title><addtitle>COASE</addtitle><description>Singulation is useful for manufacturing, logistics, and service applications; we consider the problem in a planar setting. We propose a novel O(n(n + v)) linear push policy (n denotes the number of objects, v denotes the maximum number of vertices per object), ClusterPush, that can be efficiently computed using clustering. To evaluate the policy, we define singulation distance as the average pairwise distance of polygon centroids given random arrangements of 2D polygonal objects on a surface, and seek pushing policies that can maximize singulation distance. When compared with a brute force evaluation of all candidate pushes in Box2D simulator using 50,000 pushing scenarios, ClusterPush achieves 70% of the singulation distance achieved using brute force and is 2000x faster. ClusterPush also improves on previous pushing policies and can be used for multi-point pushes with two-point and edge (infinite-point) contacts. Compared with pushes with single-point contacts using ClusterPush, pushes with two-point and edge contacts improve singulation by 7% and 13% respectively. In physical experiments conducted with an ABB YuMi robot on 40 sets of 3-7 blocks, ClusterPush increases singulation distance by 15-30%, outperforming the next best policy by 24% on average. Data and code are available at https://github.com/Jekyll1021/MultiPointPushing.</description><subject>Computational modeling</subject><subject>Friction</subject><subject>Grippers</subject><subject>Manufacturing</subject><subject>Robots</subject><subject>Trajectory</subject><subject>Two dimensional displays</subject><issn>2161-8089</issn><isbn>9781728103563</isbn><isbn>1728103568</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1OwzAQhA0SEqX0BeDiF0jZjR3HOVZR-ZGCUqlwrtaJTV2lTtU4Qn17CvQ0mvlGcxjGHhDmiFA8lfVivZyngMVcaykQ8YrNilxjnmoEkSlxzSYpKkw06OKW3Q3DDkCBRpwwWoyx31P04YuvOgp05LXZ2Sby9TkauzPpAzcnXvlgz3A1Dtvf7reP279KZ5ND70PkFFr-PnbRX3zZh0hNHO7ZjaNusLOLTtnn8_KjfE2q-uWtXFSJxzyLSaZtgRqdEsZK0hKUsk447cgoaEXWEohWNZk2OUkJBCZNXQMuV0pm1BgxZY__u95auzkc_Z6Op83lEfEDLUZWOw</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Dong, Zisu</creator><creator>Krishnan, Sanjay</creator><creator>Dolasia, Sona</creator><creator>Balakrishna, Ashwin</creator><creator>Danielczuk, Michael</creator><creator>Goldberg, Ken</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201908</creationdate><title>Automating Planar Object Singulation by Linear Pushing with Single-point and Multi-point Contacts</title><author>Dong, Zisu ; Krishnan, Sanjay ; Dolasia, Sona ; Balakrishna, Ashwin ; Danielczuk, Michael ; Goldberg, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-58e9181f63be4a84066ef3f8fab60d35da03d6c58b7a440a0b22fc0f76645acb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational modeling</topic><topic>Friction</topic><topic>Grippers</topic><topic>Manufacturing</topic><topic>Robots</topic><topic>Trajectory</topic><topic>Two dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Dong, Zisu</creatorcontrib><creatorcontrib>Krishnan, Sanjay</creatorcontrib><creatorcontrib>Dolasia, Sona</creatorcontrib><creatorcontrib>Balakrishna, Ashwin</creatorcontrib><creatorcontrib>Danielczuk, Michael</creatorcontrib><creatorcontrib>Goldberg, Ken</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Zisu</au><au>Krishnan, Sanjay</au><au>Dolasia, Sona</au><au>Balakrishna, Ashwin</au><au>Danielczuk, Michael</au><au>Goldberg, Ken</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automating Planar Object Singulation by Linear Pushing with Single-point and Multi-point Contacts</atitle><btitle>2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)</btitle><stitle>COASE</stitle><date>2019-08</date><risdate>2019</risdate><spage>1429</spage><epage>1436</epage><pages>1429-1436</pages><eissn>2161-8089</eissn><eisbn>9781728103563</eisbn><eisbn>1728103568</eisbn><abstract>Singulation is useful for manufacturing, logistics, and service applications; we consider the problem in a planar setting. We propose a novel O(n(n + v)) linear push policy (n denotes the number of objects, v denotes the maximum number of vertices per object), ClusterPush, that can be efficiently computed using clustering. To evaluate the policy, we define singulation distance as the average pairwise distance of polygon centroids given random arrangements of 2D polygonal objects on a surface, and seek pushing policies that can maximize singulation distance. When compared with a brute force evaluation of all candidate pushes in Box2D simulator using 50,000 pushing scenarios, ClusterPush achieves 70% of the singulation distance achieved using brute force and is 2000x faster. ClusterPush also improves on previous pushing policies and can be used for multi-point pushes with two-point and edge (infinite-point) contacts. Compared with pushes with single-point contacts using ClusterPush, pushes with two-point and edge contacts improve singulation by 7% and 13% respectively. In physical experiments conducted with an ABB YuMi robot on 40 sets of 3-7 blocks, ClusterPush increases singulation distance by 15-30%, outperforming the next best policy by 24% on average. Data and code are available at https://github.com/Jekyll1021/MultiPointPushing.</abstract><pub>IEEE</pub><doi>10.1109/COASE.2019.8843111</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2161-8089 |
ispartof | 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), 2019, p.1429-1436 |
issn | 2161-8089 |
language | eng |
recordid | cdi_ieee_primary_8843111 |
source | IEEE Xplore All Conference Series |
subjects | Computational modeling Friction Grippers Manufacturing Robots Trajectory Two dimensional displays |
title | Automating Planar Object Singulation by Linear Pushing with Single-point and Multi-point Contacts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automating%20Planar%20Object%20Singulation%20by%20Linear%20Pushing%20with%20Single-point%20and%20Multi-point%20Contacts&rft.btitle=2019%20IEEE%2015th%20International%20Conference%20on%20Automation%20Science%20and%20Engineering%20(CASE)&rft.au=Dong,%20Zisu&rft.date=2019-08&rft.spage=1429&rft.epage=1436&rft.pages=1429-1436&rft.eissn=2161-8089&rft_id=info:doi/10.1109/COASE.2019.8843111&rft.eisbn=9781728103563&rft.eisbn_list=1728103568&rft_dat=%3Cieee_CHZPO%3E8843111%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-58e9181f63be4a84066ef3f8fab60d35da03d6c58b7a440a0b22fc0f76645acb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8843111&rfr_iscdi=true |