Loading…

A Framework for Distributed Representations of Domain Embedding

In many information retrieval and natural language processing tasks, it is common to use pertained word embedding to alleviate training difficulty. This motivate us to learn low-dimension representations for all domains on the Internet. There are hundreds of millions of domains on the Internet, majo...

Full description

Saved in:
Bibliographic Details
Main Authors: Hou, Yuqing, Jin, Feng, Zhao, Baicheng, Zhang, Wei
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8811
container_issue
container_start_page 8807
container_title
container_volume
creator Hou, Yuqing
Jin, Feng
Zhao, Baicheng
Zhang, Wei
description In many information retrieval and natural language processing tasks, it is common to use pertained word embedding to alleviate training difficulty. This motivate us to learn low-dimension representations for all domains on the Internet. There are hundreds of millions of domains on the Internet, majority of the domains attribute to only one or two specific field. Representing these property of domains in a low-dimensional and interpretable space attribute to many tasks, such as domain recommendation, domain classification, web search and et al. In this paper, we propose a novel algorithm named domain embedding, an unsupervised model which learns a fixed length representation for each domain. Experimental results show the superior performance of the proposed method.
doi_str_mv 10.23919/ChiCC.2019.8866060
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8866060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8866060</ieee_id><sourcerecordid>8866060</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-48f71f24fce2521bd876c326fe2298fb1253192d1fde80d9aa76b27d855f2d543</originalsourceid><addsrcrecordid>eNotj8tKAzEUQKMgWGu_oJv8wIy5N5PXSsq0VaEgiK5LprnRqDNTkhHx7xXs6mwOBw5jSxA1Sgfupn1LbVujAFdbq7XQ4owtnLHOWlBaOoPnbIagoUKH5pJdlfIu_iwHcsZuV3ybfU_fY_7gccx8ncqUU_c1UeBPdMxUaJj8lMah8DHy9dj7NPBN31EIaXi9ZhfRfxZanDhnL9vNc3tf7R7vHtrVrkoo5FQ1NhqI2MQDoULogjX6IFFHQnQ2doBKgsMAMZAVwXlvdIcmWKUiBtXIOVv-dxMR7Y859T7_7E-_8hcuQkme</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Framework for Distributed Representations of Domain Embedding</title><source>IEEE Xplore All Conference Series</source><creator>Hou, Yuqing ; Jin, Feng ; Zhao, Baicheng ; Zhang, Wei</creator><creatorcontrib>Hou, Yuqing ; Jin, Feng ; Zhao, Baicheng ; Zhang, Wei</creatorcontrib><description>In many information retrieval and natural language processing tasks, it is common to use pertained word embedding to alleviate training difficulty. This motivate us to learn low-dimension representations for all domains on the Internet. There are hundreds of millions of domains on the Internet, majority of the domains attribute to only one or two specific field. Representing these property of domains in a low-dimensional and interpretable space attribute to many tasks, such as domain recommendation, domain classification, web search and et al. In this paper, we propose a novel algorithm named domain embedding, an unsupervised model which learns a fixed length representation for each domain. Experimental results show the superior performance of the proposed method.</description><identifier>EISSN: 2161-2927</identifier><identifier>EISBN: 9789881563972</identifier><identifier>EISBN: 9881563976</identifier><identifier>DOI: 10.23919/ChiCC.2019.8866060</identifier><language>eng</language><publisher>Technical Committee on Control Theory, Chinese Association of Automation</publisher><subject>Crawlers ; Domain Classification ; Domain Embedding ; Internet ; Logistics ; Neural Network ; Prediction algorithms ; Training</subject><ispartof>2019 Chinese Control Conference (CCC), 2019, p.8807-8811</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8866060$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8866060$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hou, Yuqing</creatorcontrib><creatorcontrib>Jin, Feng</creatorcontrib><creatorcontrib>Zhao, Baicheng</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><title>A Framework for Distributed Representations of Domain Embedding</title><title>2019 Chinese Control Conference (CCC)</title><addtitle>ChiCC</addtitle><description>In many information retrieval and natural language processing tasks, it is common to use pertained word embedding to alleviate training difficulty. This motivate us to learn low-dimension representations for all domains on the Internet. There are hundreds of millions of domains on the Internet, majority of the domains attribute to only one or two specific field. Representing these property of domains in a low-dimensional and interpretable space attribute to many tasks, such as domain recommendation, domain classification, web search and et al. In this paper, we propose a novel algorithm named domain embedding, an unsupervised model which learns a fixed length representation for each domain. Experimental results show the superior performance of the proposed method.</description><subject>Crawlers</subject><subject>Domain Classification</subject><subject>Domain Embedding</subject><subject>Internet</subject><subject>Logistics</subject><subject>Neural Network</subject><subject>Prediction algorithms</subject><subject>Training</subject><issn>2161-2927</issn><isbn>9789881563972</isbn><isbn>9881563976</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKAzEUQKMgWGu_oJv8wIy5N5PXSsq0VaEgiK5LprnRqDNTkhHx7xXs6mwOBw5jSxA1Sgfupn1LbVujAFdbq7XQ4owtnLHOWlBaOoPnbIagoUKH5pJdlfIu_iwHcsZuV3ybfU_fY_7gccx8ncqUU_c1UeBPdMxUaJj8lMah8DHy9dj7NPBN31EIaXi9ZhfRfxZanDhnL9vNc3tf7R7vHtrVrkoo5FQ1NhqI2MQDoULogjX6IFFHQnQ2doBKgsMAMZAVwXlvdIcmWKUiBtXIOVv-dxMR7Y859T7_7E-_8hcuQkme</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Hou, Yuqing</creator><creator>Jin, Feng</creator><creator>Zhao, Baicheng</creator><creator>Zhang, Wei</creator><general>Technical Committee on Control Theory, Chinese Association of Automation</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201907</creationdate><title>A Framework for Distributed Representations of Domain Embedding</title><author>Hou, Yuqing ; Jin, Feng ; Zhao, Baicheng ; Zhang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-48f71f24fce2521bd876c326fe2298fb1253192d1fde80d9aa76b27d855f2d543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Crawlers</topic><topic>Domain Classification</topic><topic>Domain Embedding</topic><topic>Internet</topic><topic>Logistics</topic><topic>Neural Network</topic><topic>Prediction algorithms</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Hou, Yuqing</creatorcontrib><creatorcontrib>Jin, Feng</creatorcontrib><creatorcontrib>Zhao, Baicheng</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hou, Yuqing</au><au>Jin, Feng</au><au>Zhao, Baicheng</au><au>Zhang, Wei</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Framework for Distributed Representations of Domain Embedding</atitle><btitle>2019 Chinese Control Conference (CCC)</btitle><stitle>ChiCC</stitle><date>2019-07</date><risdate>2019</risdate><spage>8807</spage><epage>8811</epage><pages>8807-8811</pages><eissn>2161-2927</eissn><eisbn>9789881563972</eisbn><eisbn>9881563976</eisbn><abstract>In many information retrieval and natural language processing tasks, it is common to use pertained word embedding to alleviate training difficulty. This motivate us to learn low-dimension representations for all domains on the Internet. There are hundreds of millions of domains on the Internet, majority of the domains attribute to only one or two specific field. Representing these property of domains in a low-dimensional and interpretable space attribute to many tasks, such as domain recommendation, domain classification, web search and et al. In this paper, we propose a novel algorithm named domain embedding, an unsupervised model which learns a fixed length representation for each domain. Experimental results show the superior performance of the proposed method.</abstract><pub>Technical Committee on Control Theory, Chinese Association of Automation</pub><doi>10.23919/ChiCC.2019.8866060</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2161-2927
ispartof 2019 Chinese Control Conference (CCC), 2019, p.8807-8811
issn 2161-2927
language eng
recordid cdi_ieee_primary_8866060
source IEEE Xplore All Conference Series
subjects Crawlers
Domain Classification
Domain Embedding
Internet
Logistics
Neural Network
Prediction algorithms
Training
title A Framework for Distributed Representations of Domain Embedding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Framework%20for%20Distributed%20Representations%20of%20Domain%20Embedding&rft.btitle=2019%20Chinese%20Control%20Conference%20(CCC)&rft.au=Hou,%20Yuqing&rft.date=2019-07&rft.spage=8807&rft.epage=8811&rft.pages=8807-8811&rft.eissn=2161-2927&rft_id=info:doi/10.23919/ChiCC.2019.8866060&rft.eisbn=9789881563972&rft.eisbn_list=9881563976&rft_dat=%3Cieee_CHZPO%3E8866060%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-48f71f24fce2521bd876c326fe2298fb1253192d1fde80d9aa76b27d855f2d543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8866060&rfr_iscdi=true