Loading…
A Framework for Distributed Representations of Domain Embedding
In many information retrieval and natural language processing tasks, it is common to use pertained word embedding to alleviate training difficulty. This motivate us to learn low-dimension representations for all domains on the Internet. There are hundreds of millions of domains on the Internet, majo...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8811 |
container_issue | |
container_start_page | 8807 |
container_title | |
container_volume | |
creator | Hou, Yuqing Jin, Feng Zhao, Baicheng Zhang, Wei |
description | In many information retrieval and natural language processing tasks, it is common to use pertained word embedding to alleviate training difficulty. This motivate us to learn low-dimension representations for all domains on the Internet. There are hundreds of millions of domains on the Internet, majority of the domains attribute to only one or two specific field. Representing these property of domains in a low-dimensional and interpretable space attribute to many tasks, such as domain recommendation, domain classification, web search and et al. In this paper, we propose a novel algorithm named domain embedding, an unsupervised model which learns a fixed length representation for each domain. Experimental results show the superior performance of the proposed method. |
doi_str_mv | 10.23919/ChiCC.2019.8866060 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8866060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8866060</ieee_id><sourcerecordid>8866060</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-48f71f24fce2521bd876c326fe2298fb1253192d1fde80d9aa76b27d855f2d543</originalsourceid><addsrcrecordid>eNotj8tKAzEUQKMgWGu_oJv8wIy5N5PXSsq0VaEgiK5LprnRqDNTkhHx7xXs6mwOBw5jSxA1Sgfupn1LbVujAFdbq7XQ4owtnLHOWlBaOoPnbIagoUKH5pJdlfIu_iwHcsZuV3ybfU_fY_7gccx8ncqUU_c1UeBPdMxUaJj8lMah8DHy9dj7NPBN31EIaXi9ZhfRfxZanDhnL9vNc3tf7R7vHtrVrkoo5FQ1NhqI2MQDoULogjX6IFFHQnQ2doBKgsMAMZAVwXlvdIcmWKUiBtXIOVv-dxMR7Y859T7_7E-_8hcuQkme</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Framework for Distributed Representations of Domain Embedding</title><source>IEEE Xplore All Conference Series</source><creator>Hou, Yuqing ; Jin, Feng ; Zhao, Baicheng ; Zhang, Wei</creator><creatorcontrib>Hou, Yuqing ; Jin, Feng ; Zhao, Baicheng ; Zhang, Wei</creatorcontrib><description>In many information retrieval and natural language processing tasks, it is common to use pertained word embedding to alleviate training difficulty. This motivate us to learn low-dimension representations for all domains on the Internet. There are hundreds of millions of domains on the Internet, majority of the domains attribute to only one or two specific field. Representing these property of domains in a low-dimensional and interpretable space attribute to many tasks, such as domain recommendation, domain classification, web search and et al. In this paper, we propose a novel algorithm named domain embedding, an unsupervised model which learns a fixed length representation for each domain. Experimental results show the superior performance of the proposed method.</description><identifier>EISSN: 2161-2927</identifier><identifier>EISBN: 9789881563972</identifier><identifier>EISBN: 9881563976</identifier><identifier>DOI: 10.23919/ChiCC.2019.8866060</identifier><language>eng</language><publisher>Technical Committee on Control Theory, Chinese Association of Automation</publisher><subject>Crawlers ; Domain Classification ; Domain Embedding ; Internet ; Logistics ; Neural Network ; Prediction algorithms ; Training</subject><ispartof>2019 Chinese Control Conference (CCC), 2019, p.8807-8811</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8866060$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8866060$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hou, Yuqing</creatorcontrib><creatorcontrib>Jin, Feng</creatorcontrib><creatorcontrib>Zhao, Baicheng</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><title>A Framework for Distributed Representations of Domain Embedding</title><title>2019 Chinese Control Conference (CCC)</title><addtitle>ChiCC</addtitle><description>In many information retrieval and natural language processing tasks, it is common to use pertained word embedding to alleviate training difficulty. This motivate us to learn low-dimension representations for all domains on the Internet. There are hundreds of millions of domains on the Internet, majority of the domains attribute to only one or two specific field. Representing these property of domains in a low-dimensional and interpretable space attribute to many tasks, such as domain recommendation, domain classification, web search and et al. In this paper, we propose a novel algorithm named domain embedding, an unsupervised model which learns a fixed length representation for each domain. Experimental results show the superior performance of the proposed method.</description><subject>Crawlers</subject><subject>Domain Classification</subject><subject>Domain Embedding</subject><subject>Internet</subject><subject>Logistics</subject><subject>Neural Network</subject><subject>Prediction algorithms</subject><subject>Training</subject><issn>2161-2927</issn><isbn>9789881563972</isbn><isbn>9881563976</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKAzEUQKMgWGu_oJv8wIy5N5PXSsq0VaEgiK5LprnRqDNTkhHx7xXs6mwOBw5jSxA1Sgfupn1LbVujAFdbq7XQ4owtnLHOWlBaOoPnbIagoUKH5pJdlfIu_iwHcsZuV3ybfU_fY_7gccx8ncqUU_c1UeBPdMxUaJj8lMah8DHy9dj7NPBN31EIaXi9ZhfRfxZanDhnL9vNc3tf7R7vHtrVrkoo5FQ1NhqI2MQDoULogjX6IFFHQnQ2doBKgsMAMZAVwXlvdIcmWKUiBtXIOVv-dxMR7Y859T7_7E-_8hcuQkme</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Hou, Yuqing</creator><creator>Jin, Feng</creator><creator>Zhao, Baicheng</creator><creator>Zhang, Wei</creator><general>Technical Committee on Control Theory, Chinese Association of Automation</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201907</creationdate><title>A Framework for Distributed Representations of Domain Embedding</title><author>Hou, Yuqing ; Jin, Feng ; Zhao, Baicheng ; Zhang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-48f71f24fce2521bd876c326fe2298fb1253192d1fde80d9aa76b27d855f2d543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Crawlers</topic><topic>Domain Classification</topic><topic>Domain Embedding</topic><topic>Internet</topic><topic>Logistics</topic><topic>Neural Network</topic><topic>Prediction algorithms</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Hou, Yuqing</creatorcontrib><creatorcontrib>Jin, Feng</creatorcontrib><creatorcontrib>Zhao, Baicheng</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hou, Yuqing</au><au>Jin, Feng</au><au>Zhao, Baicheng</au><au>Zhang, Wei</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Framework for Distributed Representations of Domain Embedding</atitle><btitle>2019 Chinese Control Conference (CCC)</btitle><stitle>ChiCC</stitle><date>2019-07</date><risdate>2019</risdate><spage>8807</spage><epage>8811</epage><pages>8807-8811</pages><eissn>2161-2927</eissn><eisbn>9789881563972</eisbn><eisbn>9881563976</eisbn><abstract>In many information retrieval and natural language processing tasks, it is common to use pertained word embedding to alleviate training difficulty. This motivate us to learn low-dimension representations for all domains on the Internet. There are hundreds of millions of domains on the Internet, majority of the domains attribute to only one or two specific field. Representing these property of domains in a low-dimensional and interpretable space attribute to many tasks, such as domain recommendation, domain classification, web search and et al. In this paper, we propose a novel algorithm named domain embedding, an unsupervised model which learns a fixed length representation for each domain. Experimental results show the superior performance of the proposed method.</abstract><pub>Technical Committee on Control Theory, Chinese Association of Automation</pub><doi>10.23919/ChiCC.2019.8866060</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2161-2927 |
ispartof | 2019 Chinese Control Conference (CCC), 2019, p.8807-8811 |
issn | 2161-2927 |
language | eng |
recordid | cdi_ieee_primary_8866060 |
source | IEEE Xplore All Conference Series |
subjects | Crawlers Domain Classification Domain Embedding Internet Logistics Neural Network Prediction algorithms Training |
title | A Framework for Distributed Representations of Domain Embedding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Framework%20for%20Distributed%20Representations%20of%20Domain%20Embedding&rft.btitle=2019%20Chinese%20Control%20Conference%20(CCC)&rft.au=Hou,%20Yuqing&rft.date=2019-07&rft.spage=8807&rft.epage=8811&rft.pages=8807-8811&rft.eissn=2161-2927&rft_id=info:doi/10.23919/ChiCC.2019.8866060&rft.eisbn=9789881563972&rft.eisbn_list=9881563976&rft_dat=%3Cieee_CHZPO%3E8866060%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-48f71f24fce2521bd876c326fe2298fb1253192d1fde80d9aa76b27d855f2d543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8866060&rfr_iscdi=true |