Loading…
Algorithm optimization of Er-doped Superfluorescent Fiber Source Feedback Control Module
Feedback control module, as an important unit that exists in the Er-doped superfluorescent fiber source's (ED-SFS's) circuit system, shows high significance to the output characteristics of ED-SFS. In this paper, we put forward an optimized feedback control module scheme utilizing the incr...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Feedback control module, as an important unit that exists in the Er-doped superfluorescent fiber source's (ED-SFS's) circuit system, shows high significance to the output characteristics of ED-SFS. In this paper, we put forward an optimized feedback control module scheme utilizing the incremental differential-ahead proportion-integral-derivation (IDA-PID) control algorithm. We theoretically analyze this control algorithm and compare it with the other two PID control algorithms. The experimental results show that, with the IDA-PID algorithm, the output power stability of ED-SFS can be reduced from 2.13% to 1.65%, and the mean wavelength thermal stability can be reduced from 261ppm to 148ppm over one hundred degrees Celsius (-40°C~+60°). |
---|---|
ISSN: | 2161-2927 |
DOI: | 10.23919/ChiCC.2019.8866641 |