Loading…
OFF Current Suppression by Gate-gontrolled Strain in The N-type GaAs Piezoelectric FinFETs
The gate-controlled compressive strain induced by piezoelectric layers (piezo-layers) is used to suppress the OFF current of n-type GaAs piezoelectric FinFETs (Piezo-FinFETs). Quantum ballistic transport of n-type GaAs Piezo-FinFETs is modeled by the self-consistent Schrödinger-Poisson system. Our...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The gate-controlled compressive strain induced by piezoelectric layers (piezo-layers) is used to suppress the OFF current of n-type GaAs piezoelectric FinFETs (Piezo-FinFETs). Quantum ballistic transport of n-type GaAs Piezo-FinFETs is modeled by the self-consistent Schrödinger-Poisson system. Our results suggest that n-type GaAs Piezo-FinFETs reduce OFF current by an order of magnitude for both high performance and low power applications compared with their counterparts without piezo-layers. The influences of device orientations on device performance is also investigated. The optimal device orientation of n-type GaAs Piezo-FinFETs is on the crystal surface (111). |
---|---|
ISSN: | 1946-1577 |
DOI: | 10.1109/SISPAD.2019.8870452 |