Loading…

Industrial IoT for Intelligent Steelmaking With Converter Mouth Flame Spectrum Information Processed by Deep Learning

In this article, based on the fact that the converter mouth flame is the comprehensive external appearance of the physical and chemical reactions in the converter during the steelmaking process, the continuous spectrum information of the converter mouth flame was obtained by USB4000 spectrometer. In...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2020-04, Vol.16 (4), p.2640-2650
Main Authors: Han, Yang, Zhang, Cai-Jun, Wang, Lu, Zhang, Yan-Chao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, based on the fact that the converter mouth flame is the comprehensive external appearance of the physical and chemical reactions in the converter during the steelmaking process, the continuous spectrum information of the converter mouth flame was obtained by USB4000 spectrometer. In the framework of the Internet of Things, a bidirectional recursive multiscale convolution depth neural network algorithm can take into account the characteristics of frequency domain structure and time domain dynamic sequence. It is applied to the deep-learning of the converter mouth flame spectrum information. The dynamic prediction model of carbon content and temperature value in molten steel at the later stage of steelmaking is constructed. The static control system and dynamic prediction model of automatic steelmaking are intelligently fused to realize one-key steelmaking control. The results show that the average hit rate of carbon content, temperature, and carbon temperature at the end of steelmaking is 94.78%, 98.41% and 93.43%, which makes the end-point control of steelmaking more stable and the blowing rate less than 1%.
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2019.2948100