Loading…
A Big Data visualization layer meta-model proposition
The evolution and democratization of technologies have created a veritable explosion of information, this, of course, gives rise to an urgent need to analyze and deal with the huge masses of data. In fact, the problems raised by the accumulation of data (storage, processing time, heterogeneity, capt...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Erraissi, Allae Mouad, Banane Belangour, Abdessamad |
description | The evolution and democratization of technologies have created a veritable explosion of information, this, of course, gives rise to an urgent need to analyze and deal with the huge masses of data. In fact, the problems raised by the accumulation of data (storage, processing time, heterogeneity, capture rate/generation, etc.) become stronger because the data are massive, complex and varied. It is clear that the representation of information has the capacity to synthesize and condense data, and constitutes an efficient approach for analysis. Nevertheless, it remains ineffective and does not solve these problems. Besides that, conventional visualization techniques are rarely adapted to manage and process this mass of information. To face the complex big data challenges, various types of technologies have been developed. This paper talks about the visualization layer. This layer is located just above the Data Sources, Ingestion, Hadoop storage and Hadoop Platform Management layers for which we have already proposed a meta-modeling. It has a very important role at the level of Big Data Structure. In a continuous effort, we shall present in this paper a universal meta-modeling for the visualization layer and its relationship with the other layers of a Big Data system. |
doi_str_mv | 10.1109/ICMSAO.2019.8880276 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8880276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8880276</ieee_id><sourcerecordid>8880276</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-e46c7db90a586ef0f41120515050dea6e684fe9fa1a3c2407011be86f717daf03</originalsourceid><addsrcrecordid>eNotj81Kw0AURkdBsNQ8QTfzAon3zn-WMf4VKl2o63Lb3JGRxJQkCvXprbSrszhw-D4hFggFIpS3y_rltVoXCrAsQgigvLsQWekDWh2cd8GYSzFT1uvcHt21yMbxEwC0Am2cmglbybv0Ie9pIvmTxm9q0y9Nqf-SLR14kB1PlHd9w63cD_2-H9O_vBFXkdqRszPn4v3x4a1-zlfrp2VdrfKEGKacjdv5ZlsC2eA4QjSICixasNAwOT7ui1xGQtI7ZcAD4paDix59QxH0XCxO3cTMm_2QOhoOm_NR_QdR4kaI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Big Data visualization layer meta-model proposition</title><source>IEEE Xplore All Conference Series</source><creator>Erraissi, Allae ; Mouad, Banane ; Belangour, Abdessamad</creator><creatorcontrib>Erraissi, Allae ; Mouad, Banane ; Belangour, Abdessamad</creatorcontrib><description>The evolution and democratization of technologies have created a veritable explosion of information, this, of course, gives rise to an urgent need to analyze and deal with the huge masses of data. In fact, the problems raised by the accumulation of data (storage, processing time, heterogeneity, capture rate/generation, etc.) become stronger because the data are massive, complex and varied. It is clear that the representation of information has the capacity to synthesize and condense data, and constitutes an efficient approach for analysis. Nevertheless, it remains ineffective and does not solve these problems. Besides that, conventional visualization techniques are rarely adapted to manage and process this mass of information. To face the complex big data challenges, various types of technologies have been developed. This paper talks about the visualization layer. This layer is located just above the Data Sources, Ingestion, Hadoop storage and Hadoop Platform Management layers for which we have already proposed a meta-modeling. It has a very important role at the level of Big Data Structure. In a continuous effort, we shall present in this paper a universal meta-modeling for the visualization layer and its relationship with the other layers of a Big Data system.</description><identifier>EISSN: 2573-5276</identifier><identifier>EISBN: 9781538676844</identifier><identifier>EISBN: 1538676842</identifier><identifier>EISBN: 9781538676837</identifier><identifier>EISBN: 1538676834</identifier><identifier>DOI: 10.1109/ICMSAO.2019.8880276</identifier><language>eng</language><publisher>IEEE</publisher><subject>Big Data ; Data models ; Data visualization ; Data Viz ; Encoding ; Image color analysis ; Management layer ; Meta-model ; Model Driven Engineering ; Shape ; Visualization ; Visualization layer</subject><ispartof>2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), 2019, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8880276$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8880276$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Erraissi, Allae</creatorcontrib><creatorcontrib>Mouad, Banane</creatorcontrib><creatorcontrib>Belangour, Abdessamad</creatorcontrib><title>A Big Data visualization layer meta-model proposition</title><title>2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO)</title><addtitle>ICMSAO</addtitle><description>The evolution and democratization of technologies have created a veritable explosion of information, this, of course, gives rise to an urgent need to analyze and deal with the huge masses of data. In fact, the problems raised by the accumulation of data (storage, processing time, heterogeneity, capture rate/generation, etc.) become stronger because the data are massive, complex and varied. It is clear that the representation of information has the capacity to synthesize and condense data, and constitutes an efficient approach for analysis. Nevertheless, it remains ineffective and does not solve these problems. Besides that, conventional visualization techniques are rarely adapted to manage and process this mass of information. To face the complex big data challenges, various types of technologies have been developed. This paper talks about the visualization layer. This layer is located just above the Data Sources, Ingestion, Hadoop storage and Hadoop Platform Management layers for which we have already proposed a meta-modeling. It has a very important role at the level of Big Data Structure. In a continuous effort, we shall present in this paper a universal meta-modeling for the visualization layer and its relationship with the other layers of a Big Data system.</description><subject>Big Data</subject><subject>Data models</subject><subject>Data visualization</subject><subject>Data Viz</subject><subject>Encoding</subject><subject>Image color analysis</subject><subject>Management layer</subject><subject>Meta-model</subject><subject>Model Driven Engineering</subject><subject>Shape</subject><subject>Visualization</subject><subject>Visualization layer</subject><issn>2573-5276</issn><isbn>9781538676844</isbn><isbn>1538676842</isbn><isbn>9781538676837</isbn><isbn>1538676834</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AURkdBsNQ8QTfzAon3zn-WMf4VKl2o63Lb3JGRxJQkCvXprbSrszhw-D4hFggFIpS3y_rltVoXCrAsQgigvLsQWekDWh2cd8GYSzFT1uvcHt21yMbxEwC0Am2cmglbybv0Ie9pIvmTxm9q0y9Nqf-SLR14kB1PlHd9w63cD_2-H9O_vBFXkdqRszPn4v3x4a1-zlfrp2VdrfKEGKacjdv5ZlsC2eA4QjSICixasNAwOT7ui1xGQtI7ZcAD4paDix59QxH0XCxO3cTMm_2QOhoOm_NR_QdR4kaI</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Erraissi, Allae</creator><creator>Mouad, Banane</creator><creator>Belangour, Abdessamad</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201904</creationdate><title>A Big Data visualization layer meta-model proposition</title><author>Erraissi, Allae ; Mouad, Banane ; Belangour, Abdessamad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-e46c7db90a586ef0f41120515050dea6e684fe9fa1a3c2407011be86f717daf03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Big Data</topic><topic>Data models</topic><topic>Data visualization</topic><topic>Data Viz</topic><topic>Encoding</topic><topic>Image color analysis</topic><topic>Management layer</topic><topic>Meta-model</topic><topic>Model Driven Engineering</topic><topic>Shape</topic><topic>Visualization</topic><topic>Visualization layer</topic><toplevel>online_resources</toplevel><creatorcontrib>Erraissi, Allae</creatorcontrib><creatorcontrib>Mouad, Banane</creatorcontrib><creatorcontrib>Belangour, Abdessamad</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Erraissi, Allae</au><au>Mouad, Banane</au><au>Belangour, Abdessamad</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Big Data visualization layer meta-model proposition</atitle><btitle>2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO)</btitle><stitle>ICMSAO</stitle><date>2019-04</date><risdate>2019</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2573-5276</eissn><eisbn>9781538676844</eisbn><eisbn>1538676842</eisbn><eisbn>9781538676837</eisbn><eisbn>1538676834</eisbn><abstract>The evolution and democratization of technologies have created a veritable explosion of information, this, of course, gives rise to an urgent need to analyze and deal with the huge masses of data. In fact, the problems raised by the accumulation of data (storage, processing time, heterogeneity, capture rate/generation, etc.) become stronger because the data are massive, complex and varied. It is clear that the representation of information has the capacity to synthesize and condense data, and constitutes an efficient approach for analysis. Nevertheless, it remains ineffective and does not solve these problems. Besides that, conventional visualization techniques are rarely adapted to manage and process this mass of information. To face the complex big data challenges, various types of technologies have been developed. This paper talks about the visualization layer. This layer is located just above the Data Sources, Ingestion, Hadoop storage and Hadoop Platform Management layers for which we have already proposed a meta-modeling. It has a very important role at the level of Big Data Structure. In a continuous effort, we shall present in this paper a universal meta-modeling for the visualization layer and its relationship with the other layers of a Big Data system.</abstract><pub>IEEE</pub><doi>10.1109/ICMSAO.2019.8880276</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2573-5276 |
ispartof | 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), 2019, p.1-5 |
issn | 2573-5276 |
language | eng |
recordid | cdi_ieee_primary_8880276 |
source | IEEE Xplore All Conference Series |
subjects | Big Data Data models Data visualization Data Viz Encoding Image color analysis Management layer Meta-model Model Driven Engineering Shape Visualization Visualization layer |
title | A Big Data visualization layer meta-model proposition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A06%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Big%20Data%20visualization%20layer%20meta-model%20proposition&rft.btitle=2019%208th%20International%20Conference%20on%20Modeling%20Simulation%20and%20Applied%20Optimization%20(ICMSAO)&rft.au=Erraissi,%20Allae&rft.date=2019-04&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2573-5276&rft_id=info:doi/10.1109/ICMSAO.2019.8880276&rft.eisbn=9781538676844&rft.eisbn_list=1538676842&rft.eisbn_list=9781538676837&rft.eisbn_list=1538676834&rft_dat=%3Cieee_CHZPO%3E8880276%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-e46c7db90a586ef0f41120515050dea6e684fe9fa1a3c2407011be86f717daf03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8880276&rfr_iscdi=true |