Loading…

A Big Data visualization layer meta-model proposition

The evolution and democratization of technologies have created a veritable explosion of information, this, of course, gives rise to an urgent need to analyze and deal with the huge masses of data. In fact, the problems raised by the accumulation of data (storage, processing time, heterogeneity, capt...

Full description

Saved in:
Bibliographic Details
Main Authors: Erraissi, Allae, Mouad, Banane, Belangour, Abdessamad
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Erraissi, Allae
Mouad, Banane
Belangour, Abdessamad
description The evolution and democratization of technologies have created a veritable explosion of information, this, of course, gives rise to an urgent need to analyze and deal with the huge masses of data. In fact, the problems raised by the accumulation of data (storage, processing time, heterogeneity, capture rate/generation, etc.) become stronger because the data are massive, complex and varied. It is clear that the representation of information has the capacity to synthesize and condense data, and constitutes an efficient approach for analysis. Nevertheless, it remains ineffective and does not solve these problems. Besides that, conventional visualization techniques are rarely adapted to manage and process this mass of information. To face the complex big data challenges, various types of technologies have been developed. This paper talks about the visualization layer. This layer is located just above the Data Sources, Ingestion, Hadoop storage and Hadoop Platform Management layers for which we have already proposed a meta-modeling. It has a very important role at the level of Big Data Structure. In a continuous effort, we shall present in this paper a universal meta-modeling for the visualization layer and its relationship with the other layers of a Big Data system.
doi_str_mv 10.1109/ICMSAO.2019.8880276
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8880276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8880276</ieee_id><sourcerecordid>8880276</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-e46c7db90a586ef0f41120515050dea6e684fe9fa1a3c2407011be86f717daf03</originalsourceid><addsrcrecordid>eNotj81Kw0AURkdBsNQ8QTfzAon3zn-WMf4VKl2o63Lb3JGRxJQkCvXprbSrszhw-D4hFggFIpS3y_rltVoXCrAsQgigvLsQWekDWh2cd8GYSzFT1uvcHt21yMbxEwC0Am2cmglbybv0Ie9pIvmTxm9q0y9Nqf-SLR14kB1PlHd9w63cD_2-H9O_vBFXkdqRszPn4v3x4a1-zlfrp2VdrfKEGKacjdv5ZlsC2eA4QjSICixasNAwOT7ui1xGQtI7ZcAD4paDix59QxH0XCxO3cTMm_2QOhoOm_NR_QdR4kaI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Big Data visualization layer meta-model proposition</title><source>IEEE Xplore All Conference Series</source><creator>Erraissi, Allae ; Mouad, Banane ; Belangour, Abdessamad</creator><creatorcontrib>Erraissi, Allae ; Mouad, Banane ; Belangour, Abdessamad</creatorcontrib><description>The evolution and democratization of technologies have created a veritable explosion of information, this, of course, gives rise to an urgent need to analyze and deal with the huge masses of data. In fact, the problems raised by the accumulation of data (storage, processing time, heterogeneity, capture rate/generation, etc.) become stronger because the data are massive, complex and varied. It is clear that the representation of information has the capacity to synthesize and condense data, and constitutes an efficient approach for analysis. Nevertheless, it remains ineffective and does not solve these problems. Besides that, conventional visualization techniques are rarely adapted to manage and process this mass of information. To face the complex big data challenges, various types of technologies have been developed. This paper talks about the visualization layer. This layer is located just above the Data Sources, Ingestion, Hadoop storage and Hadoop Platform Management layers for which we have already proposed a meta-modeling. It has a very important role at the level of Big Data Structure. In a continuous effort, we shall present in this paper a universal meta-modeling for the visualization layer and its relationship with the other layers of a Big Data system.</description><identifier>EISSN: 2573-5276</identifier><identifier>EISBN: 9781538676844</identifier><identifier>EISBN: 1538676842</identifier><identifier>EISBN: 9781538676837</identifier><identifier>EISBN: 1538676834</identifier><identifier>DOI: 10.1109/ICMSAO.2019.8880276</identifier><language>eng</language><publisher>IEEE</publisher><subject>Big Data ; Data models ; Data visualization ; Data Viz ; Encoding ; Image color analysis ; Management layer ; Meta-model ; Model Driven Engineering ; Shape ; Visualization ; Visualization layer</subject><ispartof>2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), 2019, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8880276$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8880276$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Erraissi, Allae</creatorcontrib><creatorcontrib>Mouad, Banane</creatorcontrib><creatorcontrib>Belangour, Abdessamad</creatorcontrib><title>A Big Data visualization layer meta-model proposition</title><title>2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO)</title><addtitle>ICMSAO</addtitle><description>The evolution and democratization of technologies have created a veritable explosion of information, this, of course, gives rise to an urgent need to analyze and deal with the huge masses of data. In fact, the problems raised by the accumulation of data (storage, processing time, heterogeneity, capture rate/generation, etc.) become stronger because the data are massive, complex and varied. It is clear that the representation of information has the capacity to synthesize and condense data, and constitutes an efficient approach for analysis. Nevertheless, it remains ineffective and does not solve these problems. Besides that, conventional visualization techniques are rarely adapted to manage and process this mass of information. To face the complex big data challenges, various types of technologies have been developed. This paper talks about the visualization layer. This layer is located just above the Data Sources, Ingestion, Hadoop storage and Hadoop Platform Management layers for which we have already proposed a meta-modeling. It has a very important role at the level of Big Data Structure. In a continuous effort, we shall present in this paper a universal meta-modeling for the visualization layer and its relationship with the other layers of a Big Data system.</description><subject>Big Data</subject><subject>Data models</subject><subject>Data visualization</subject><subject>Data Viz</subject><subject>Encoding</subject><subject>Image color analysis</subject><subject>Management layer</subject><subject>Meta-model</subject><subject>Model Driven Engineering</subject><subject>Shape</subject><subject>Visualization</subject><subject>Visualization layer</subject><issn>2573-5276</issn><isbn>9781538676844</isbn><isbn>1538676842</isbn><isbn>9781538676837</isbn><isbn>1538676834</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AURkdBsNQ8QTfzAon3zn-WMf4VKl2o63Lb3JGRxJQkCvXprbSrszhw-D4hFggFIpS3y_rltVoXCrAsQgigvLsQWekDWh2cd8GYSzFT1uvcHt21yMbxEwC0Am2cmglbybv0Ie9pIvmTxm9q0y9Nqf-SLR14kB1PlHd9w63cD_2-H9O_vBFXkdqRszPn4v3x4a1-zlfrp2VdrfKEGKacjdv5ZlsC2eA4QjSICixasNAwOT7ui1xGQtI7ZcAD4paDix59QxH0XCxO3cTMm_2QOhoOm_NR_QdR4kaI</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Erraissi, Allae</creator><creator>Mouad, Banane</creator><creator>Belangour, Abdessamad</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201904</creationdate><title>A Big Data visualization layer meta-model proposition</title><author>Erraissi, Allae ; Mouad, Banane ; Belangour, Abdessamad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-e46c7db90a586ef0f41120515050dea6e684fe9fa1a3c2407011be86f717daf03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Big Data</topic><topic>Data models</topic><topic>Data visualization</topic><topic>Data Viz</topic><topic>Encoding</topic><topic>Image color analysis</topic><topic>Management layer</topic><topic>Meta-model</topic><topic>Model Driven Engineering</topic><topic>Shape</topic><topic>Visualization</topic><topic>Visualization layer</topic><toplevel>online_resources</toplevel><creatorcontrib>Erraissi, Allae</creatorcontrib><creatorcontrib>Mouad, Banane</creatorcontrib><creatorcontrib>Belangour, Abdessamad</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Erraissi, Allae</au><au>Mouad, Banane</au><au>Belangour, Abdessamad</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Big Data visualization layer meta-model proposition</atitle><btitle>2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO)</btitle><stitle>ICMSAO</stitle><date>2019-04</date><risdate>2019</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2573-5276</eissn><eisbn>9781538676844</eisbn><eisbn>1538676842</eisbn><eisbn>9781538676837</eisbn><eisbn>1538676834</eisbn><abstract>The evolution and democratization of technologies have created a veritable explosion of information, this, of course, gives rise to an urgent need to analyze and deal with the huge masses of data. In fact, the problems raised by the accumulation of data (storage, processing time, heterogeneity, capture rate/generation, etc.) become stronger because the data are massive, complex and varied. It is clear that the representation of information has the capacity to synthesize and condense data, and constitutes an efficient approach for analysis. Nevertheless, it remains ineffective and does not solve these problems. Besides that, conventional visualization techniques are rarely adapted to manage and process this mass of information. To face the complex big data challenges, various types of technologies have been developed. This paper talks about the visualization layer. This layer is located just above the Data Sources, Ingestion, Hadoop storage and Hadoop Platform Management layers for which we have already proposed a meta-modeling. It has a very important role at the level of Big Data Structure. In a continuous effort, we shall present in this paper a universal meta-modeling for the visualization layer and its relationship with the other layers of a Big Data system.</abstract><pub>IEEE</pub><doi>10.1109/ICMSAO.2019.8880276</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2573-5276
ispartof 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), 2019, p.1-5
issn 2573-5276
language eng
recordid cdi_ieee_primary_8880276
source IEEE Xplore All Conference Series
subjects Big Data
Data models
Data visualization
Data Viz
Encoding
Image color analysis
Management layer
Meta-model
Model Driven Engineering
Shape
Visualization
Visualization layer
title A Big Data visualization layer meta-model proposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A06%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Big%20Data%20visualization%20layer%20meta-model%20proposition&rft.btitle=2019%208th%20International%20Conference%20on%20Modeling%20Simulation%20and%20Applied%20Optimization%20(ICMSAO)&rft.au=Erraissi,%20Allae&rft.date=2019-04&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2573-5276&rft_id=info:doi/10.1109/ICMSAO.2019.8880276&rft.eisbn=9781538676844&rft.eisbn_list=1538676842&rft.eisbn_list=9781538676837&rft.eisbn_list=1538676834&rft_dat=%3Cieee_CHZPO%3E8880276%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-e46c7db90a586ef0f41120515050dea6e684fe9fa1a3c2407011be86f717daf03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8880276&rfr_iscdi=true