Loading…
Joint Fleet Sizing and Charging System Planning for Autonomous Electric Vehicles
This paper studies the joint fleet sizing and charging system planning problem for a company operating a fleet of autonomous electric vehicles (AEVs) for passenger and goods transportation. Most of the relevant published papers focus on intracity scenarios and adopt heuristic approaches, e.g., agent...
Saved in:
Published in: | IEEE transactions on intelligent transportation systems 2020-11, Vol.21 (11), p.4725-4738 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-679cef6f07d729f4be3edea7081bdc9507df4bc538ba645e4d724806edacd60e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-679cef6f07d729f4be3edea7081bdc9507df4bc538ba645e4d724806edacd60e3 |
container_end_page | 4738 |
container_issue | 11 |
container_start_page | 4725 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 21 |
creator | Zhang, Hongcai Sheppard, Colin J. R. Lipman, Timothy E. Moura, Scott J. |
description | This paper studies the joint fleet sizing and charging system planning problem for a company operating a fleet of autonomous electric vehicles (AEVs) for passenger and goods transportation. Most of the relevant published papers focus on intracity scenarios and adopt heuristic approaches, e.g., agent based simulation, which do not guarantee optimality. In contrast, we propose a mixed integer linear programming model for intercity scenarios. This model incorporates comprehensive considerations of 1) limited AEV driving range; 2) optimal AEV routing and relocating operations; 3) time-varying origin-destination transport demands; and 4) differentiated operation cost structure of passenger and goods transportation. The proposed model can be computational expensive when the scale of the transportation network is large. We then exploit the structure of this program to expedite its solution. Numerical experiments are conducted to validate the proposed method. Our experimental results show that AEVs in passenger and goods transportation have remarkable planning and operation differences. We also demonstrate that intelligent routing and relocating operations, charging system and vehicle parameters, e.g., charging power, battery capacity, driving speed etc., can significantly affect the economic efficiency and the planning results of an AEV fleet. |
doi_str_mv | 10.1109/TITS.2019.2946152 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8880643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8880643</ieee_id><sourcerecordid>2458750976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-679cef6f07d729f4be3edea7081bdc9507df4bc538ba645e4d724806edacd60e3</originalsourceid><addsrcrecordid>eNo9kFFrwjAUhcPYYM7tB4y9BPZcl7RJ2jyKqHMIE3R7DTG91UpNXNI-uF-_FGVP997DOffAh9AzJSNKiXzbLDbrUUqoHKWSCcrTGzSgnBcJIVTc9nvKEkk4uUcPIRyiyjilA7T6cLVt8awBaPG6_q3tDmtb4sle-11_rM-hhSNeNdra_q6cx-OuddYdXRfwtAHT-trgb9jXpoHwiO4q3QR4us4h-ppNN5P3ZPk5X0zGy8QwkraJyKWBSlQkL_NUVmwLGZSgc1LQbWkkj3oUDc-KrRaMA4s2VhABpTalIJAN0evl78m7nw5Cqw6u8zZWqpTxIudE5iK66MVlvAvBQ6VOvj5qf1aUqB6c6sGpHpy6gouZl0umBoB_f1HEdpZlf3Iyak0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458750976</pqid></control><display><type>article</type><title>Joint Fleet Sizing and Charging System Planning for Autonomous Electric Vehicles</title><source>IEEE Xplore (Online service)</source><creator>Zhang, Hongcai ; Sheppard, Colin J. R. ; Lipman, Timothy E. ; Moura, Scott J.</creator><creatorcontrib>Zhang, Hongcai ; Sheppard, Colin J. R. ; Lipman, Timothy E. ; Moura, Scott J.</creatorcontrib><description>This paper studies the joint fleet sizing and charging system planning problem for a company operating a fleet of autonomous electric vehicles (AEVs) for passenger and goods transportation. Most of the relevant published papers focus on intracity scenarios and adopt heuristic approaches, e.g., agent based simulation, which do not guarantee optimality. In contrast, we propose a mixed integer linear programming model for intercity scenarios. This model incorporates comprehensive considerations of 1) limited AEV driving range; 2) optimal AEV routing and relocating operations; 3) time-varying origin-destination transport demands; and 4) differentiated operation cost structure of passenger and goods transportation. The proposed model can be computational expensive when the scale of the transportation network is large. We then exploit the structure of this program to expedite its solution. Numerical experiments are conducted to validate the proposed method. Our experimental results show that AEVs in passenger and goods transportation have remarkable planning and operation differences. We also demonstrate that intelligent routing and relocating operations, charging system and vehicle parameters, e.g., charging power, battery capacity, driving speed etc., can significantly affect the economic efficiency and the planning results of an AEV fleet.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2019.2946152</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autonomous vehicle ; Charging ; charging system planning ; Companies ; Computational modeling ; electric vehicle ; Electric vehicles ; fleet size ; Integer programming ; Linear programming ; Mixed integer ; Numerical models ; Optimization ; Passengers ; Planning ; relocating ; Routing ; Sizing ; Transportation</subject><ispartof>IEEE transactions on intelligent transportation systems, 2020-11, Vol.21 (11), p.4725-4738</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-679cef6f07d729f4be3edea7081bdc9507df4bc538ba645e4d724806edacd60e3</citedby><cites>FETCH-LOGICAL-c402t-679cef6f07d729f4be3edea7081bdc9507df4bc538ba645e4d724806edacd60e3</cites><orcidid>0000-0002-8294-6419 ; 0000-0002-6393-4375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8880643$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhang, Hongcai</creatorcontrib><creatorcontrib>Sheppard, Colin J. R.</creatorcontrib><creatorcontrib>Lipman, Timothy E.</creatorcontrib><creatorcontrib>Moura, Scott J.</creatorcontrib><title>Joint Fleet Sizing and Charging System Planning for Autonomous Electric Vehicles</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This paper studies the joint fleet sizing and charging system planning problem for a company operating a fleet of autonomous electric vehicles (AEVs) for passenger and goods transportation. Most of the relevant published papers focus on intracity scenarios and adopt heuristic approaches, e.g., agent based simulation, which do not guarantee optimality. In contrast, we propose a mixed integer linear programming model for intercity scenarios. This model incorporates comprehensive considerations of 1) limited AEV driving range; 2) optimal AEV routing and relocating operations; 3) time-varying origin-destination transport demands; and 4) differentiated operation cost structure of passenger and goods transportation. The proposed model can be computational expensive when the scale of the transportation network is large. We then exploit the structure of this program to expedite its solution. Numerical experiments are conducted to validate the proposed method. Our experimental results show that AEVs in passenger and goods transportation have remarkable planning and operation differences. We also demonstrate that intelligent routing and relocating operations, charging system and vehicle parameters, e.g., charging power, battery capacity, driving speed etc., can significantly affect the economic efficiency and the planning results of an AEV fleet.</description><subject>Autonomous vehicle</subject><subject>Charging</subject><subject>charging system planning</subject><subject>Companies</subject><subject>Computational modeling</subject><subject>electric vehicle</subject><subject>Electric vehicles</subject><subject>fleet size</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Mixed integer</subject><subject>Numerical models</subject><subject>Optimization</subject><subject>Passengers</subject><subject>Planning</subject><subject>relocating</subject><subject>Routing</subject><subject>Sizing</subject><subject>Transportation</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kFFrwjAUhcPYYM7tB4y9BPZcl7RJ2jyKqHMIE3R7DTG91UpNXNI-uF-_FGVP997DOffAh9AzJSNKiXzbLDbrUUqoHKWSCcrTGzSgnBcJIVTc9nvKEkk4uUcPIRyiyjilA7T6cLVt8awBaPG6_q3tDmtb4sle-11_rM-hhSNeNdra_q6cx-OuddYdXRfwtAHT-trgb9jXpoHwiO4q3QR4us4h-ppNN5P3ZPk5X0zGy8QwkraJyKWBSlQkL_NUVmwLGZSgc1LQbWkkj3oUDc-KrRaMA4s2VhABpTalIJAN0evl78m7nw5Cqw6u8zZWqpTxIudE5iK66MVlvAvBQ6VOvj5qf1aUqB6c6sGpHpy6gouZl0umBoB_f1HEdpZlf3Iyak0</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Zhang, Hongcai</creator><creator>Sheppard, Colin J. R.</creator><creator>Lipman, Timothy E.</creator><creator>Moura, Scott J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8294-6419</orcidid><orcidid>https://orcid.org/0000-0002-6393-4375</orcidid></search><sort><creationdate>20201101</creationdate><title>Joint Fleet Sizing and Charging System Planning for Autonomous Electric Vehicles</title><author>Zhang, Hongcai ; Sheppard, Colin J. R. ; Lipman, Timothy E. ; Moura, Scott J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-679cef6f07d729f4be3edea7081bdc9507df4bc538ba645e4d724806edacd60e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autonomous vehicle</topic><topic>Charging</topic><topic>charging system planning</topic><topic>Companies</topic><topic>Computational modeling</topic><topic>electric vehicle</topic><topic>Electric vehicles</topic><topic>fleet size</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Mixed integer</topic><topic>Numerical models</topic><topic>Optimization</topic><topic>Passengers</topic><topic>Planning</topic><topic>relocating</topic><topic>Routing</topic><topic>Sizing</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hongcai</creatorcontrib><creatorcontrib>Sheppard, Colin J. R.</creatorcontrib><creatorcontrib>Lipman, Timothy E.</creatorcontrib><creatorcontrib>Moura, Scott J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hongcai</au><au>Sheppard, Colin J. R.</au><au>Lipman, Timothy E.</au><au>Moura, Scott J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Fleet Sizing and Charging System Planning for Autonomous Electric Vehicles</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>21</volume><issue>11</issue><spage>4725</spage><epage>4738</epage><pages>4725-4738</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This paper studies the joint fleet sizing and charging system planning problem for a company operating a fleet of autonomous electric vehicles (AEVs) for passenger and goods transportation. Most of the relevant published papers focus on intracity scenarios and adopt heuristic approaches, e.g., agent based simulation, which do not guarantee optimality. In contrast, we propose a mixed integer linear programming model for intercity scenarios. This model incorporates comprehensive considerations of 1) limited AEV driving range; 2) optimal AEV routing and relocating operations; 3) time-varying origin-destination transport demands; and 4) differentiated operation cost structure of passenger and goods transportation. The proposed model can be computational expensive when the scale of the transportation network is large. We then exploit the structure of this program to expedite its solution. Numerical experiments are conducted to validate the proposed method. Our experimental results show that AEVs in passenger and goods transportation have remarkable planning and operation differences. We also demonstrate that intelligent routing and relocating operations, charging system and vehicle parameters, e.g., charging power, battery capacity, driving speed etc., can significantly affect the economic efficiency and the planning results of an AEV fleet.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2019.2946152</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8294-6419</orcidid><orcidid>https://orcid.org/0000-0002-6393-4375</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2020-11, Vol.21 (11), p.4725-4738 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_ieee_primary_8880643 |
source | IEEE Xplore (Online service) |
subjects | Autonomous vehicle Charging charging system planning Companies Computational modeling electric vehicle Electric vehicles fleet size Integer programming Linear programming Mixed integer Numerical models Optimization Passengers Planning relocating Routing Sizing Transportation |
title | Joint Fleet Sizing and Charging System Planning for Autonomous Electric Vehicles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A40%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Fleet%20Sizing%20and%20Charging%20System%20Planning%20for%20Autonomous%20Electric%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Zhang,%20Hongcai&rft.date=2020-11-01&rft.volume=21&rft.issue=11&rft.spage=4725&rft.epage=4738&rft.pages=4725-4738&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2019.2946152&rft_dat=%3Cproquest_ieee_%3E2458750976%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-679cef6f07d729f4be3edea7081bdc9507df4bc538ba645e4d724806edacd60e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2458750976&rft_id=info:pmid/&rft_ieee_id=8880643&rfr_iscdi=true |