Loading…

Joint Fleet Sizing and Charging System Planning for Autonomous Electric Vehicles

This paper studies the joint fleet sizing and charging system planning problem for a company operating a fleet of autonomous electric vehicles (AEVs) for passenger and goods transportation. Most of the relevant published papers focus on intracity scenarios and adopt heuristic approaches, e.g., agent...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2020-11, Vol.21 (11), p.4725-4738
Main Authors: Zhang, Hongcai, Sheppard, Colin J. R., Lipman, Timothy E., Moura, Scott J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-679cef6f07d729f4be3edea7081bdc9507df4bc538ba645e4d724806edacd60e3
cites cdi_FETCH-LOGICAL-c402t-679cef6f07d729f4be3edea7081bdc9507df4bc538ba645e4d724806edacd60e3
container_end_page 4738
container_issue 11
container_start_page 4725
container_title IEEE transactions on intelligent transportation systems
container_volume 21
creator Zhang, Hongcai
Sheppard, Colin J. R.
Lipman, Timothy E.
Moura, Scott J.
description This paper studies the joint fleet sizing and charging system planning problem for a company operating a fleet of autonomous electric vehicles (AEVs) for passenger and goods transportation. Most of the relevant published papers focus on intracity scenarios and adopt heuristic approaches, e.g., agent based simulation, which do not guarantee optimality. In contrast, we propose a mixed integer linear programming model for intercity scenarios. This model incorporates comprehensive considerations of 1) limited AEV driving range; 2) optimal AEV routing and relocating operations; 3) time-varying origin-destination transport demands; and 4) differentiated operation cost structure of passenger and goods transportation. The proposed model can be computational expensive when the scale of the transportation network is large. We then exploit the structure of this program to expedite its solution. Numerical experiments are conducted to validate the proposed method. Our experimental results show that AEVs in passenger and goods transportation have remarkable planning and operation differences. We also demonstrate that intelligent routing and relocating operations, charging system and vehicle parameters, e.g., charging power, battery capacity, driving speed etc., can significantly affect the economic efficiency and the planning results of an AEV fleet.
doi_str_mv 10.1109/TITS.2019.2946152
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8880643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8880643</ieee_id><sourcerecordid>2458750976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-679cef6f07d729f4be3edea7081bdc9507df4bc538ba645e4d724806edacd60e3</originalsourceid><addsrcrecordid>eNo9kFFrwjAUhcPYYM7tB4y9BPZcl7RJ2jyKqHMIE3R7DTG91UpNXNI-uF-_FGVP997DOffAh9AzJSNKiXzbLDbrUUqoHKWSCcrTGzSgnBcJIVTc9nvKEkk4uUcPIRyiyjilA7T6cLVt8awBaPG6_q3tDmtb4sle-11_rM-hhSNeNdra_q6cx-OuddYdXRfwtAHT-trgb9jXpoHwiO4q3QR4us4h-ppNN5P3ZPk5X0zGy8QwkraJyKWBSlQkL_NUVmwLGZSgc1LQbWkkj3oUDc-KrRaMA4s2VhABpTalIJAN0evl78m7nw5Cqw6u8zZWqpTxIudE5iK66MVlvAvBQ6VOvj5qf1aUqB6c6sGpHpy6gouZl0umBoB_f1HEdpZlf3Iyak0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458750976</pqid></control><display><type>article</type><title>Joint Fleet Sizing and Charging System Planning for Autonomous Electric Vehicles</title><source>IEEE Xplore (Online service)</source><creator>Zhang, Hongcai ; Sheppard, Colin J. R. ; Lipman, Timothy E. ; Moura, Scott J.</creator><creatorcontrib>Zhang, Hongcai ; Sheppard, Colin J. R. ; Lipman, Timothy E. ; Moura, Scott J.</creatorcontrib><description>This paper studies the joint fleet sizing and charging system planning problem for a company operating a fleet of autonomous electric vehicles (AEVs) for passenger and goods transportation. Most of the relevant published papers focus on intracity scenarios and adopt heuristic approaches, e.g., agent based simulation, which do not guarantee optimality. In contrast, we propose a mixed integer linear programming model for intercity scenarios. This model incorporates comprehensive considerations of 1) limited AEV driving range; 2) optimal AEV routing and relocating operations; 3) time-varying origin-destination transport demands; and 4) differentiated operation cost structure of passenger and goods transportation. The proposed model can be computational expensive when the scale of the transportation network is large. We then exploit the structure of this program to expedite its solution. Numerical experiments are conducted to validate the proposed method. Our experimental results show that AEVs in passenger and goods transportation have remarkable planning and operation differences. We also demonstrate that intelligent routing and relocating operations, charging system and vehicle parameters, e.g., charging power, battery capacity, driving speed etc., can significantly affect the economic efficiency and the planning results of an AEV fleet.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2019.2946152</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autonomous vehicle ; Charging ; charging system planning ; Companies ; Computational modeling ; electric vehicle ; Electric vehicles ; fleet size ; Integer programming ; Linear programming ; Mixed integer ; Numerical models ; Optimization ; Passengers ; Planning ; relocating ; Routing ; Sizing ; Transportation</subject><ispartof>IEEE transactions on intelligent transportation systems, 2020-11, Vol.21 (11), p.4725-4738</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-679cef6f07d729f4be3edea7081bdc9507df4bc538ba645e4d724806edacd60e3</citedby><cites>FETCH-LOGICAL-c402t-679cef6f07d729f4be3edea7081bdc9507df4bc538ba645e4d724806edacd60e3</cites><orcidid>0000-0002-8294-6419 ; 0000-0002-6393-4375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8880643$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhang, Hongcai</creatorcontrib><creatorcontrib>Sheppard, Colin J. R.</creatorcontrib><creatorcontrib>Lipman, Timothy E.</creatorcontrib><creatorcontrib>Moura, Scott J.</creatorcontrib><title>Joint Fleet Sizing and Charging System Planning for Autonomous Electric Vehicles</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This paper studies the joint fleet sizing and charging system planning problem for a company operating a fleet of autonomous electric vehicles (AEVs) for passenger and goods transportation. Most of the relevant published papers focus on intracity scenarios and adopt heuristic approaches, e.g., agent based simulation, which do not guarantee optimality. In contrast, we propose a mixed integer linear programming model for intercity scenarios. This model incorporates comprehensive considerations of 1) limited AEV driving range; 2) optimal AEV routing and relocating operations; 3) time-varying origin-destination transport demands; and 4) differentiated operation cost structure of passenger and goods transportation. The proposed model can be computational expensive when the scale of the transportation network is large. We then exploit the structure of this program to expedite its solution. Numerical experiments are conducted to validate the proposed method. Our experimental results show that AEVs in passenger and goods transportation have remarkable planning and operation differences. We also demonstrate that intelligent routing and relocating operations, charging system and vehicle parameters, e.g., charging power, battery capacity, driving speed etc., can significantly affect the economic efficiency and the planning results of an AEV fleet.</description><subject>Autonomous vehicle</subject><subject>Charging</subject><subject>charging system planning</subject><subject>Companies</subject><subject>Computational modeling</subject><subject>electric vehicle</subject><subject>Electric vehicles</subject><subject>fleet size</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Mixed integer</subject><subject>Numerical models</subject><subject>Optimization</subject><subject>Passengers</subject><subject>Planning</subject><subject>relocating</subject><subject>Routing</subject><subject>Sizing</subject><subject>Transportation</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kFFrwjAUhcPYYM7tB4y9BPZcl7RJ2jyKqHMIE3R7DTG91UpNXNI-uF-_FGVP997DOffAh9AzJSNKiXzbLDbrUUqoHKWSCcrTGzSgnBcJIVTc9nvKEkk4uUcPIRyiyjilA7T6cLVt8awBaPG6_q3tDmtb4sle-11_rM-hhSNeNdra_q6cx-OuddYdXRfwtAHT-trgb9jXpoHwiO4q3QR4us4h-ppNN5P3ZPk5X0zGy8QwkraJyKWBSlQkL_NUVmwLGZSgc1LQbWkkj3oUDc-KrRaMA4s2VhABpTalIJAN0evl78m7nw5Cqw6u8zZWqpTxIudE5iK66MVlvAvBQ6VOvj5qf1aUqB6c6sGpHpy6gouZl0umBoB_f1HEdpZlf3Iyak0</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Zhang, Hongcai</creator><creator>Sheppard, Colin J. R.</creator><creator>Lipman, Timothy E.</creator><creator>Moura, Scott J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8294-6419</orcidid><orcidid>https://orcid.org/0000-0002-6393-4375</orcidid></search><sort><creationdate>20201101</creationdate><title>Joint Fleet Sizing and Charging System Planning for Autonomous Electric Vehicles</title><author>Zhang, Hongcai ; Sheppard, Colin J. R. ; Lipman, Timothy E. ; Moura, Scott J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-679cef6f07d729f4be3edea7081bdc9507df4bc538ba645e4d724806edacd60e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autonomous vehicle</topic><topic>Charging</topic><topic>charging system planning</topic><topic>Companies</topic><topic>Computational modeling</topic><topic>electric vehicle</topic><topic>Electric vehicles</topic><topic>fleet size</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Mixed integer</topic><topic>Numerical models</topic><topic>Optimization</topic><topic>Passengers</topic><topic>Planning</topic><topic>relocating</topic><topic>Routing</topic><topic>Sizing</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hongcai</creatorcontrib><creatorcontrib>Sheppard, Colin J. R.</creatorcontrib><creatorcontrib>Lipman, Timothy E.</creatorcontrib><creatorcontrib>Moura, Scott J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hongcai</au><au>Sheppard, Colin J. R.</au><au>Lipman, Timothy E.</au><au>Moura, Scott J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Fleet Sizing and Charging System Planning for Autonomous Electric Vehicles</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>21</volume><issue>11</issue><spage>4725</spage><epage>4738</epage><pages>4725-4738</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This paper studies the joint fleet sizing and charging system planning problem for a company operating a fleet of autonomous electric vehicles (AEVs) for passenger and goods transportation. Most of the relevant published papers focus on intracity scenarios and adopt heuristic approaches, e.g., agent based simulation, which do not guarantee optimality. In contrast, we propose a mixed integer linear programming model for intercity scenarios. This model incorporates comprehensive considerations of 1) limited AEV driving range; 2) optimal AEV routing and relocating operations; 3) time-varying origin-destination transport demands; and 4) differentiated operation cost structure of passenger and goods transportation. The proposed model can be computational expensive when the scale of the transportation network is large. We then exploit the structure of this program to expedite its solution. Numerical experiments are conducted to validate the proposed method. Our experimental results show that AEVs in passenger and goods transportation have remarkable planning and operation differences. We also demonstrate that intelligent routing and relocating operations, charging system and vehicle parameters, e.g., charging power, battery capacity, driving speed etc., can significantly affect the economic efficiency and the planning results of an AEV fleet.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2019.2946152</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8294-6419</orcidid><orcidid>https://orcid.org/0000-0002-6393-4375</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2020-11, Vol.21 (11), p.4725-4738
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_8880643
source IEEE Xplore (Online service)
subjects Autonomous vehicle
Charging
charging system planning
Companies
Computational modeling
electric vehicle
Electric vehicles
fleet size
Integer programming
Linear programming
Mixed integer
Numerical models
Optimization
Passengers
Planning
relocating
Routing
Sizing
Transportation
title Joint Fleet Sizing and Charging System Planning for Autonomous Electric Vehicles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A40%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Fleet%20Sizing%20and%20Charging%20System%20Planning%20for%20Autonomous%20Electric%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Zhang,%20Hongcai&rft.date=2020-11-01&rft.volume=21&rft.issue=11&rft.spage=4725&rft.epage=4738&rft.pages=4725-4738&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2019.2946152&rft_dat=%3Cproquest_ieee_%3E2458750976%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-679cef6f07d729f4be3edea7081bdc9507df4bc538ba645e4d724806edacd60e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2458750976&rft_id=info:pmid/&rft_ieee_id=8880643&rfr_iscdi=true