Loading…

A Self-Stabilizing Algorithm for Constructing ST-Reachable Directed Acyclic Graph When lS| ≤ 2 and |T| ≤ 2

In this paper, we introduce a new graph structure named an ST-reachable directed acyclic graph which is a directed acyclic graph (DAG) that guarantees reachability from every sender to every target (i.e., a directed path exists). When an arbitrary connected undirected graph G=(V,E) and two sets of t...

Full description

Saved in:
Bibliographic Details
Main Authors: Kim, Yonghwan, Shibata, Masahiro, Sudo, Yuichi, Nakamura, Junya, Katayama, Yoshiaki, Masuzawa, Toshimitsu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2237
container_issue
container_start_page 2228
container_title
container_volume
creator Kim, Yonghwan
Shibata, Masahiro
Sudo, Yuichi
Nakamura, Junya
Katayama, Yoshiaki
Masuzawa, Toshimitsu
description In this paper, we introduce a new graph structure named an ST-reachable directed acyclic graph which is a directed acyclic graph (DAG) that guarantees reachability from every sender to every target (i.e., a directed path exists). When an arbitrary connected undirected graph G=(V,E) and two sets of the vertices, senders S (⊂ V) and targets T (⊂ V), are given, we consider construction of a minimal ST-reachable DAG by changing some undirected edges to arcs and removing the remaining edges. This implies that every node in T is reachable from every node in S on the constructed ST-reachable DAG. In particular, our goals are (1) to find the necessary and sufficient condition that an ST-reachable DAG can be constructed, and (2) to design a self-stabilizing algorithm for constructing a minimal ST-reachable DAG (if exists). In this paper, we present the necessary and sufficient condition that a minimal ST-reachable DAG can be constructed when S ≤ 2 and |T| ≤ 2, and propose a self-stabilizing algorithm to construct an ST-reachable DAG (if exists) when an arbitrary connected undirected graph, S (|S| ≤ 2) and T (|T| ≤ 2) are given. Moreover, our proposed algorithm can detect the non-existence of ST-reachable DAG if there exists no ST-reachable DAG of the given graph and two sets of vertices, S and T.
doi_str_mv 10.1109/ICDCS.2019.00219
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8885040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8885040</ieee_id><sourcerecordid>8885040</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-3daca1a63477ea80f205e856a1ea5fbdac2d81a27ec3c61ec92aede1ad9080db3</originalsourceid><addsrcrecordid>eNotjEFKw0AUQEdBsNbuBTdzgcT_J51ksgyp1kJBMBWX5Wfy04ykaZnERaUX8B6ezJOo2NXj8eAJcYMQIkJ6t8hneREqwDQEUJieiUmaGEyUQaUxhXMxUjrRgZkiXoqrvn8DAG3iaCS6TBbc1kExUOla9-G6jczazc67odnKeudlvuv6wb_b4S8Vq-CZyTZUtixnzrMduJKZPdjWWTn3tG_ka8OdbIuj_P78kkpSV8nj6mTX4qKmtufJiWPx8nC_yh-D5dN8kWfLwCGaIYgqsoQUR9MkYTJQK9BsdEzIpOvyt6rKIKmEbWRjZJsq4oqRqhQMVGU0Frf_X8fM6713W_KHtTFGwxSiH5g-Wx4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Self-Stabilizing Algorithm for Constructing ST-Reachable Directed Acyclic Graph When lS| ≤ 2 and |T| ≤ 2</title><source>IEEE Xplore All Conference Series</source><creator>Kim, Yonghwan ; Shibata, Masahiro ; Sudo, Yuichi ; Nakamura, Junya ; Katayama, Yoshiaki ; Masuzawa, Toshimitsu</creator><creatorcontrib>Kim, Yonghwan ; Shibata, Masahiro ; Sudo, Yuichi ; Nakamura, Junya ; Katayama, Yoshiaki ; Masuzawa, Toshimitsu</creatorcontrib><description>In this paper, we introduce a new graph structure named an ST-reachable directed acyclic graph which is a directed acyclic graph (DAG) that guarantees reachability from every sender to every target (i.e., a directed path exists). When an arbitrary connected undirected graph G=(V,E) and two sets of the vertices, senders S (⊂ V) and targets T (⊂ V), are given, we consider construction of a minimal ST-reachable DAG by changing some undirected edges to arcs and removing the remaining edges. This implies that every node in T is reachable from every node in S on the constructed ST-reachable DAG. In particular, our goals are (1) to find the necessary and sufficient condition that an ST-reachable DAG can be constructed, and (2) to design a self-stabilizing algorithm for constructing a minimal ST-reachable DAG (if exists). In this paper, we present the necessary and sufficient condition that a minimal ST-reachable DAG can be constructed when S ≤ 2 and |T| ≤ 2, and propose a self-stabilizing algorithm to construct an ST-reachable DAG (if exists) when an arbitrary connected undirected graph, S (|S| ≤ 2) and T (|T| ≤ 2) are given. Moreover, our proposed algorithm can detect the non-existence of ST-reachable DAG if there exists no ST-reachable DAG of the given graph and two sets of vertices, S and T.</description><identifier>EISSN: 2575-8411</identifier><identifier>EISBN: 9781728125190</identifier><identifier>EISBN: 1728125197</identifier><identifier>DOI: 10.1109/ICDCS.2019.00219</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>a directed acyclic graph ; an ST-reachable DAG ; Computational modeling ; Directed acyclic graph ; Internet of Things ; Routing ; Schedules ; self-stabilization ; Wireless networks</subject><ispartof>2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), 2019, p.2228-2237</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8885040$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8885040$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Yonghwan</creatorcontrib><creatorcontrib>Shibata, Masahiro</creatorcontrib><creatorcontrib>Sudo, Yuichi</creatorcontrib><creatorcontrib>Nakamura, Junya</creatorcontrib><creatorcontrib>Katayama, Yoshiaki</creatorcontrib><creatorcontrib>Masuzawa, Toshimitsu</creatorcontrib><title>A Self-Stabilizing Algorithm for Constructing ST-Reachable Directed Acyclic Graph When lS| ≤ 2 and |T| ≤ 2</title><title>2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)</title><addtitle>ICDSC</addtitle><description>In this paper, we introduce a new graph structure named an ST-reachable directed acyclic graph which is a directed acyclic graph (DAG) that guarantees reachability from every sender to every target (i.e., a directed path exists). When an arbitrary connected undirected graph G=(V,E) and two sets of the vertices, senders S (⊂ V) and targets T (⊂ V), are given, we consider construction of a minimal ST-reachable DAG by changing some undirected edges to arcs and removing the remaining edges. This implies that every node in T is reachable from every node in S on the constructed ST-reachable DAG. In particular, our goals are (1) to find the necessary and sufficient condition that an ST-reachable DAG can be constructed, and (2) to design a self-stabilizing algorithm for constructing a minimal ST-reachable DAG (if exists). In this paper, we present the necessary and sufficient condition that a minimal ST-reachable DAG can be constructed when S ≤ 2 and |T| ≤ 2, and propose a self-stabilizing algorithm to construct an ST-reachable DAG (if exists) when an arbitrary connected undirected graph, S (|S| ≤ 2) and T (|T| ≤ 2) are given. Moreover, our proposed algorithm can detect the non-existence of ST-reachable DAG if there exists no ST-reachable DAG of the given graph and two sets of vertices, S and T.</description><subject>a directed acyclic graph</subject><subject>an ST-reachable DAG</subject><subject>Computational modeling</subject><subject>Directed acyclic graph</subject><subject>Internet of Things</subject><subject>Routing</subject><subject>Schedules</subject><subject>self-stabilization</subject><subject>Wireless networks</subject><issn>2575-8411</issn><isbn>9781728125190</isbn><isbn>1728125197</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjEFKw0AUQEdBsNbuBTdzgcT_J51ksgyp1kJBMBWX5Wfy04ykaZnERaUX8B6ezJOo2NXj8eAJcYMQIkJ6t8hneREqwDQEUJieiUmaGEyUQaUxhXMxUjrRgZkiXoqrvn8DAG3iaCS6TBbc1kExUOla9-G6jczazc67odnKeudlvuv6wb_b4S8Vq-CZyTZUtixnzrMduJKZPdjWWTn3tG_ka8OdbIuj_P78kkpSV8nj6mTX4qKmtufJiWPx8nC_yh-D5dN8kWfLwCGaIYgqsoQUR9MkYTJQK9BsdEzIpOvyt6rKIKmEbWRjZJsq4oqRqhQMVGU0Frf_X8fM6713W_KHtTFGwxSiH5g-Wx4</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Kim, Yonghwan</creator><creator>Shibata, Masahiro</creator><creator>Sudo, Yuichi</creator><creator>Nakamura, Junya</creator><creator>Katayama, Yoshiaki</creator><creator>Masuzawa, Toshimitsu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201907</creationdate><title>A Self-Stabilizing Algorithm for Constructing ST-Reachable Directed Acyclic Graph When lS| ≤ 2 and |T| ≤ 2</title><author>Kim, Yonghwan ; Shibata, Masahiro ; Sudo, Yuichi ; Nakamura, Junya ; Katayama, Yoshiaki ; Masuzawa, Toshimitsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-3daca1a63477ea80f205e856a1ea5fbdac2d81a27ec3c61ec92aede1ad9080db3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>a directed acyclic graph</topic><topic>an ST-reachable DAG</topic><topic>Computational modeling</topic><topic>Directed acyclic graph</topic><topic>Internet of Things</topic><topic>Routing</topic><topic>Schedules</topic><topic>self-stabilization</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yonghwan</creatorcontrib><creatorcontrib>Shibata, Masahiro</creatorcontrib><creatorcontrib>Sudo, Yuichi</creatorcontrib><creatorcontrib>Nakamura, Junya</creatorcontrib><creatorcontrib>Katayama, Yoshiaki</creatorcontrib><creatorcontrib>Masuzawa, Toshimitsu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Yonghwan</au><au>Shibata, Masahiro</au><au>Sudo, Yuichi</au><au>Nakamura, Junya</au><au>Katayama, Yoshiaki</au><au>Masuzawa, Toshimitsu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Self-Stabilizing Algorithm for Constructing ST-Reachable Directed Acyclic Graph When lS| ≤ 2 and |T| ≤ 2</atitle><btitle>2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)</btitle><stitle>ICDSC</stitle><date>2019-07</date><risdate>2019</risdate><spage>2228</spage><epage>2237</epage><pages>2228-2237</pages><eissn>2575-8411</eissn><eisbn>9781728125190</eisbn><eisbn>1728125197</eisbn><coden>IEEPAD</coden><abstract>In this paper, we introduce a new graph structure named an ST-reachable directed acyclic graph which is a directed acyclic graph (DAG) that guarantees reachability from every sender to every target (i.e., a directed path exists). When an arbitrary connected undirected graph G=(V,E) and two sets of the vertices, senders S (⊂ V) and targets T (⊂ V), are given, we consider construction of a minimal ST-reachable DAG by changing some undirected edges to arcs and removing the remaining edges. This implies that every node in T is reachable from every node in S on the constructed ST-reachable DAG. In particular, our goals are (1) to find the necessary and sufficient condition that an ST-reachable DAG can be constructed, and (2) to design a self-stabilizing algorithm for constructing a minimal ST-reachable DAG (if exists). In this paper, we present the necessary and sufficient condition that a minimal ST-reachable DAG can be constructed when S ≤ 2 and |T| ≤ 2, and propose a self-stabilizing algorithm to construct an ST-reachable DAG (if exists) when an arbitrary connected undirected graph, S (|S| ≤ 2) and T (|T| ≤ 2) are given. Moreover, our proposed algorithm can detect the non-existence of ST-reachable DAG if there exists no ST-reachable DAG of the given graph and two sets of vertices, S and T.</abstract><pub>IEEE</pub><doi>10.1109/ICDCS.2019.00219</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2575-8411
ispartof 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), 2019, p.2228-2237
issn 2575-8411
language eng
recordid cdi_ieee_primary_8885040
source IEEE Xplore All Conference Series
subjects a directed acyclic graph
an ST-reachable DAG
Computational modeling
Directed acyclic graph
Internet of Things
Routing
Schedules
self-stabilization
Wireless networks
title A Self-Stabilizing Algorithm for Constructing ST-Reachable Directed Acyclic Graph When lS| ≤ 2 and |T| ≤ 2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Self-Stabilizing%20Algorithm%20for%20Constructing%20ST-Reachable%20Directed%20Acyclic%20Graph%20When%20lS%7C%20%E2%89%A4%202%20and%20%7CT%7C%20%E2%89%A4%202&rft.btitle=2019%20IEEE%2039th%20International%20Conference%20on%20Distributed%20Computing%20Systems%20(ICDCS)&rft.au=Kim,%20Yonghwan&rft.date=2019-07&rft.spage=2228&rft.epage=2237&rft.pages=2228-2237&rft.eissn=2575-8411&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDCS.2019.00219&rft.eisbn=9781728125190&rft.eisbn_list=1728125197&rft_dat=%3Cieee_CHZPO%3E8885040%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-3daca1a63477ea80f205e856a1ea5fbdac2d81a27ec3c61ec92aede1ad9080db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8885040&rfr_iscdi=true