Loading…

A New Iterative Algorithm for Computing the Correct Decoding Probability Exponent of Discrete Memoryless Channels

Dueck and Körner's reliability function for discrete memoryless channels for rates above the capacity coincides with Arimoto's exponent of correct decoding probability. The two exponent functions are described by seemingly different optimization problems over the space of probability dist...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2020-03, Vol.66 (3), p.1585-1606
Main Authors: Jitsumatsu, Yutaka, Oohama, Yasutada
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-36942c0a384d2ea60b5db8cc4ba90e434f717aa45d3825729582f0bd4f7ee8cb3
cites cdi_FETCH-LOGICAL-c357t-36942c0a384d2ea60b5db8cc4ba90e434f717aa45d3825729582f0bd4f7ee8cb3
container_end_page 1606
container_issue 3
container_start_page 1585
container_title IEEE transactions on information theory
container_volume 66
creator Jitsumatsu, Yutaka
Oohama, Yasutada
description Dueck and Körner's reliability function for discrete memoryless channels for rates above the capacity coincides with Arimoto's exponent of correct decoding probability. The two exponent functions are described by seemingly different optimization problems over the space of probability distributions. Arimoto gave an iterative algorithm for solving the optimization problem that appears in his exponent function. However, no algorithm to solve the optimization problem that appears in Dueck and Körner's exponent has been proposed. This paper proposes a new iterative algorithm for solving the minimization problem in Dueck and Körner's exponent. In the proposed algorithm, a double minimization form with respect to two joint distributions on input and output symbols is introduced. This double minimization is connected to another double minimization that appears in Arimoto's algorithm. Such a connection leads to a quadruple minimization problem, by which the match of Arimoto and Dueck-Körner exponents is easily proved.
doi_str_mv 10.1109/TIT.2019.2950678
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8889422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8889422</ieee_id><sourcerecordid>2358913177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-36942c0a384d2ea60b5db8cc4ba90e434f717aa45d3825729582f0bd4f7ee8cb3</originalsourceid><addsrcrecordid>eNo9kEtPwkAUhSdGExHdm7iZxHVxnnS6JAWVBB8LXDfT6S2UtB2YGVT-vUMgrm7OzTn38SF0T8mIUpI9LefLESM0G7FMknGqLtCASpkm2ViKSzQghKokE0JdoxvvN1EKSdkA7Sb4HX7wPIDTofkGPGlX1jVh3eHaOpzbbrsPTb_CYQ1ROQcm4CkYWx2bn86WumzaJhzw7Hdre-gDtjWeNt44CIDfoLPu0IL3OF_rvofW36KrWrce7s51iL6eZ8v8NVl8vMzzySIxXKYh4eNMMEM0V6JioMeklFWpjBGlzggILuqUploLWXHFZBq_VqwmZRX7AMqUfIgeT3O3zu724EOxsXvXx5UF41JllNM0jS5ychlnvXdQF1vXdNodCkqKI9gigi2OYIsz2Bh5OEUaAPi3K6XiwYz_AS-YdWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358913177</pqid></control><display><type>article</type><title>A New Iterative Algorithm for Computing the Correct Decoding Probability Exponent of Discrete Memoryless Channels</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jitsumatsu, Yutaka ; Oohama, Yasutada</creator><creatorcontrib>Jitsumatsu, Yutaka ; Oohama, Yasutada</creatorcontrib><description>Dueck and Körner's reliability function for discrete memoryless channels for rates above the capacity coincides with Arimoto's exponent of correct decoding probability. The two exponent functions are described by seemingly different optimization problems over the space of probability distributions. Arimoto gave an iterative algorithm for solving the optimization problem that appears in his exponent function. However, no algorithm to solve the optimization problem that appears in Dueck and Körner's exponent has been proposed. This paper proposes a new iterative algorithm for solving the minimization problem in Dueck and Körner's exponent. In the proposed algorithm, a double minimization form with respect to two joint distributions on input and output symbols is introduced. This double minimization is connected to another double minimization that appears in Arimoto's algorithm. Such a connection leads to a quadruple minimization problem, by which the match of Arimoto and Dueck-Körner exponents is easily proved.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2019.2950678</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Arimoto-Blahut algorithms ; channel coding under cost constraint ; Channels ; Codes ; correct decoding probability exponent ; Decoding ; Encoding ; Iterative algorithms ; Iterative methods ; Memoryless systems ; Minimization ; Monte Carlo methods ; Optimization ; Probability distribution ; Queuing theory ; strong converse</subject><ispartof>IEEE transactions on information theory, 2020-03, Vol.66 (3), p.1585-1606</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-36942c0a384d2ea60b5db8cc4ba90e434f717aa45d3825729582f0bd4f7ee8cb3</citedby><cites>FETCH-LOGICAL-c357t-36942c0a384d2ea60b5db8cc4ba90e434f717aa45d3825729582f0bd4f7ee8cb3</cites><orcidid>0000-0003-3056-2402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8889422$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Jitsumatsu, Yutaka</creatorcontrib><creatorcontrib>Oohama, Yasutada</creatorcontrib><title>A New Iterative Algorithm for Computing the Correct Decoding Probability Exponent of Discrete Memoryless Channels</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Dueck and Körner's reliability function for discrete memoryless channels for rates above the capacity coincides with Arimoto's exponent of correct decoding probability. The two exponent functions are described by seemingly different optimization problems over the space of probability distributions. Arimoto gave an iterative algorithm for solving the optimization problem that appears in his exponent function. However, no algorithm to solve the optimization problem that appears in Dueck and Körner's exponent has been proposed. This paper proposes a new iterative algorithm for solving the minimization problem in Dueck and Körner's exponent. In the proposed algorithm, a double minimization form with respect to two joint distributions on input and output symbols is introduced. This double minimization is connected to another double minimization that appears in Arimoto's algorithm. Such a connection leads to a quadruple minimization problem, by which the match of Arimoto and Dueck-Körner exponents is easily proved.</description><subject>Algorithms</subject><subject>Arimoto-Blahut algorithms</subject><subject>channel coding under cost constraint</subject><subject>Channels</subject><subject>Codes</subject><subject>correct decoding probability exponent</subject><subject>Decoding</subject><subject>Encoding</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Memoryless systems</subject><subject>Minimization</subject><subject>Monte Carlo methods</subject><subject>Optimization</subject><subject>Probability distribution</subject><subject>Queuing theory</subject><subject>strong converse</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwkAUhSdGExHdm7iZxHVxnnS6JAWVBB8LXDfT6S2UtB2YGVT-vUMgrm7OzTn38SF0T8mIUpI9LefLESM0G7FMknGqLtCASpkm2ViKSzQghKokE0JdoxvvN1EKSdkA7Sb4HX7wPIDTofkGPGlX1jVh3eHaOpzbbrsPTb_CYQ1ROQcm4CkYWx2bn86WumzaJhzw7Hdre-gDtjWeNt44CIDfoLPu0IL3OF_rvofW36KrWrce7s51iL6eZ8v8NVl8vMzzySIxXKYh4eNMMEM0V6JioMeklFWpjBGlzggILuqUploLWXHFZBq_VqwmZRX7AMqUfIgeT3O3zu724EOxsXvXx5UF41JllNM0jS5ychlnvXdQF1vXdNodCkqKI9gigi2OYIsz2Bh5OEUaAPi3K6XiwYz_AS-YdWo</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Jitsumatsu, Yutaka</creator><creator>Oohama, Yasutada</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3056-2402</orcidid></search><sort><creationdate>20200301</creationdate><title>A New Iterative Algorithm for Computing the Correct Decoding Probability Exponent of Discrete Memoryless Channels</title><author>Jitsumatsu, Yutaka ; Oohama, Yasutada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-36942c0a384d2ea60b5db8cc4ba90e434f717aa45d3825729582f0bd4f7ee8cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Arimoto-Blahut algorithms</topic><topic>channel coding under cost constraint</topic><topic>Channels</topic><topic>Codes</topic><topic>correct decoding probability exponent</topic><topic>Decoding</topic><topic>Encoding</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Memoryless systems</topic><topic>Minimization</topic><topic>Monte Carlo methods</topic><topic>Optimization</topic><topic>Probability distribution</topic><topic>Queuing theory</topic><topic>strong converse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jitsumatsu, Yutaka</creatorcontrib><creatorcontrib>Oohama, Yasutada</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jitsumatsu, Yutaka</au><au>Oohama, Yasutada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Iterative Algorithm for Computing the Correct Decoding Probability Exponent of Discrete Memoryless Channels</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>66</volume><issue>3</issue><spage>1585</spage><epage>1606</epage><pages>1585-1606</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Dueck and Körner's reliability function for discrete memoryless channels for rates above the capacity coincides with Arimoto's exponent of correct decoding probability. The two exponent functions are described by seemingly different optimization problems over the space of probability distributions. Arimoto gave an iterative algorithm for solving the optimization problem that appears in his exponent function. However, no algorithm to solve the optimization problem that appears in Dueck and Körner's exponent has been proposed. This paper proposes a new iterative algorithm for solving the minimization problem in Dueck and Körner's exponent. In the proposed algorithm, a double minimization form with respect to two joint distributions on input and output symbols is introduced. This double minimization is connected to another double minimization that appears in Arimoto's algorithm. Such a connection leads to a quadruple minimization problem, by which the match of Arimoto and Dueck-Körner exponents is easily proved.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2019.2950678</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3056-2402</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2020-03, Vol.66 (3), p.1585-1606
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_8889422
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Arimoto-Blahut algorithms
channel coding under cost constraint
Channels
Codes
correct decoding probability exponent
Decoding
Encoding
Iterative algorithms
Iterative methods
Memoryless systems
Minimization
Monte Carlo methods
Optimization
Probability distribution
Queuing theory
strong converse
title A New Iterative Algorithm for Computing the Correct Decoding Probability Exponent of Discrete Memoryless Channels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Iterative%20Algorithm%20for%20Computing%20the%20Correct%20Decoding%20Probability%20Exponent%20of%20Discrete%20Memoryless%20Channels&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Jitsumatsu,%20Yutaka&rft.date=2020-03-01&rft.volume=66&rft.issue=3&rft.spage=1585&rft.epage=1606&rft.pages=1585-1606&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2019.2950678&rft_dat=%3Cproquest_ieee_%3E2358913177%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-36942c0a384d2ea60b5db8cc4ba90e434f717aa45d3825729582f0bd4f7ee8cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2358913177&rft_id=info:pmid/&rft_ieee_id=8889422&rfr_iscdi=true