Loading…
A New Iterative Algorithm for Computing the Correct Decoding Probability Exponent of Discrete Memoryless Channels
Dueck and Körner's reliability function for discrete memoryless channels for rates above the capacity coincides with Arimoto's exponent of correct decoding probability. The two exponent functions are described by seemingly different optimization problems over the space of probability dist...
Saved in:
Published in: | IEEE transactions on information theory 2020-03, Vol.66 (3), p.1585-1606 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c357t-36942c0a384d2ea60b5db8cc4ba90e434f717aa45d3825729582f0bd4f7ee8cb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-36942c0a384d2ea60b5db8cc4ba90e434f717aa45d3825729582f0bd4f7ee8cb3 |
container_end_page | 1606 |
container_issue | 3 |
container_start_page | 1585 |
container_title | IEEE transactions on information theory |
container_volume | 66 |
creator | Jitsumatsu, Yutaka Oohama, Yasutada |
description | Dueck and Körner's reliability function for discrete memoryless channels for rates above the capacity coincides with Arimoto's exponent of correct decoding probability. The two exponent functions are described by seemingly different optimization problems over the space of probability distributions. Arimoto gave an iterative algorithm for solving the optimization problem that appears in his exponent function. However, no algorithm to solve the optimization problem that appears in Dueck and Körner's exponent has been proposed. This paper proposes a new iterative algorithm for solving the minimization problem in Dueck and Körner's exponent. In the proposed algorithm, a double minimization form with respect to two joint distributions on input and output symbols is introduced. This double minimization is connected to another double minimization that appears in Arimoto's algorithm. Such a connection leads to a quadruple minimization problem, by which the match of Arimoto and Dueck-Körner exponents is easily proved. |
doi_str_mv | 10.1109/TIT.2019.2950678 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8889422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8889422</ieee_id><sourcerecordid>2358913177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-36942c0a384d2ea60b5db8cc4ba90e434f717aa45d3825729582f0bd4f7ee8cb3</originalsourceid><addsrcrecordid>eNo9kEtPwkAUhSdGExHdm7iZxHVxnnS6JAWVBB8LXDfT6S2UtB2YGVT-vUMgrm7OzTn38SF0T8mIUpI9LefLESM0G7FMknGqLtCASpkm2ViKSzQghKokE0JdoxvvN1EKSdkA7Sb4HX7wPIDTofkGPGlX1jVh3eHaOpzbbrsPTb_CYQ1ROQcm4CkYWx2bn86WumzaJhzw7Hdre-gDtjWeNt44CIDfoLPu0IL3OF_rvofW36KrWrce7s51iL6eZ8v8NVl8vMzzySIxXKYh4eNMMEM0V6JioMeklFWpjBGlzggILuqUploLWXHFZBq_VqwmZRX7AMqUfIgeT3O3zu724EOxsXvXx5UF41JllNM0jS5ychlnvXdQF1vXdNodCkqKI9gigi2OYIsz2Bh5OEUaAPi3K6XiwYz_AS-YdWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358913177</pqid></control><display><type>article</type><title>A New Iterative Algorithm for Computing the Correct Decoding Probability Exponent of Discrete Memoryless Channels</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jitsumatsu, Yutaka ; Oohama, Yasutada</creator><creatorcontrib>Jitsumatsu, Yutaka ; Oohama, Yasutada</creatorcontrib><description>Dueck and Körner's reliability function for discrete memoryless channels for rates above the capacity coincides with Arimoto's exponent of correct decoding probability. The two exponent functions are described by seemingly different optimization problems over the space of probability distributions. Arimoto gave an iterative algorithm for solving the optimization problem that appears in his exponent function. However, no algorithm to solve the optimization problem that appears in Dueck and Körner's exponent has been proposed. This paper proposes a new iterative algorithm for solving the minimization problem in Dueck and Körner's exponent. In the proposed algorithm, a double minimization form with respect to two joint distributions on input and output symbols is introduced. This double minimization is connected to another double minimization that appears in Arimoto's algorithm. Such a connection leads to a quadruple minimization problem, by which the match of Arimoto and Dueck-Körner exponents is easily proved.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2019.2950678</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Arimoto-Blahut algorithms ; channel coding under cost constraint ; Channels ; Codes ; correct decoding probability exponent ; Decoding ; Encoding ; Iterative algorithms ; Iterative methods ; Memoryless systems ; Minimization ; Monte Carlo methods ; Optimization ; Probability distribution ; Queuing theory ; strong converse</subject><ispartof>IEEE transactions on information theory, 2020-03, Vol.66 (3), p.1585-1606</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-36942c0a384d2ea60b5db8cc4ba90e434f717aa45d3825729582f0bd4f7ee8cb3</citedby><cites>FETCH-LOGICAL-c357t-36942c0a384d2ea60b5db8cc4ba90e434f717aa45d3825729582f0bd4f7ee8cb3</cites><orcidid>0000-0003-3056-2402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8889422$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Jitsumatsu, Yutaka</creatorcontrib><creatorcontrib>Oohama, Yasutada</creatorcontrib><title>A New Iterative Algorithm for Computing the Correct Decoding Probability Exponent of Discrete Memoryless Channels</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Dueck and Körner's reliability function for discrete memoryless channels for rates above the capacity coincides with Arimoto's exponent of correct decoding probability. The two exponent functions are described by seemingly different optimization problems over the space of probability distributions. Arimoto gave an iterative algorithm for solving the optimization problem that appears in his exponent function. However, no algorithm to solve the optimization problem that appears in Dueck and Körner's exponent has been proposed. This paper proposes a new iterative algorithm for solving the minimization problem in Dueck and Körner's exponent. In the proposed algorithm, a double minimization form with respect to two joint distributions on input and output symbols is introduced. This double minimization is connected to another double minimization that appears in Arimoto's algorithm. Such a connection leads to a quadruple minimization problem, by which the match of Arimoto and Dueck-Körner exponents is easily proved.</description><subject>Algorithms</subject><subject>Arimoto-Blahut algorithms</subject><subject>channel coding under cost constraint</subject><subject>Channels</subject><subject>Codes</subject><subject>correct decoding probability exponent</subject><subject>Decoding</subject><subject>Encoding</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Memoryless systems</subject><subject>Minimization</subject><subject>Monte Carlo methods</subject><subject>Optimization</subject><subject>Probability distribution</subject><subject>Queuing theory</subject><subject>strong converse</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwkAUhSdGExHdm7iZxHVxnnS6JAWVBB8LXDfT6S2UtB2YGVT-vUMgrm7OzTn38SF0T8mIUpI9LefLESM0G7FMknGqLtCASpkm2ViKSzQghKokE0JdoxvvN1EKSdkA7Sb4HX7wPIDTofkGPGlX1jVh3eHaOpzbbrsPTb_CYQ1ROQcm4CkYWx2bn86WumzaJhzw7Hdre-gDtjWeNt44CIDfoLPu0IL3OF_rvofW36KrWrce7s51iL6eZ8v8NVl8vMzzySIxXKYh4eNMMEM0V6JioMeklFWpjBGlzggILuqUploLWXHFZBq_VqwmZRX7AMqUfIgeT3O3zu724EOxsXvXx5UF41JllNM0jS5ychlnvXdQF1vXdNodCkqKI9gigi2OYIsz2Bh5OEUaAPi3K6XiwYz_AS-YdWo</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Jitsumatsu, Yutaka</creator><creator>Oohama, Yasutada</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3056-2402</orcidid></search><sort><creationdate>20200301</creationdate><title>A New Iterative Algorithm for Computing the Correct Decoding Probability Exponent of Discrete Memoryless Channels</title><author>Jitsumatsu, Yutaka ; Oohama, Yasutada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-36942c0a384d2ea60b5db8cc4ba90e434f717aa45d3825729582f0bd4f7ee8cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Arimoto-Blahut algorithms</topic><topic>channel coding under cost constraint</topic><topic>Channels</topic><topic>Codes</topic><topic>correct decoding probability exponent</topic><topic>Decoding</topic><topic>Encoding</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Memoryless systems</topic><topic>Minimization</topic><topic>Monte Carlo methods</topic><topic>Optimization</topic><topic>Probability distribution</topic><topic>Queuing theory</topic><topic>strong converse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jitsumatsu, Yutaka</creatorcontrib><creatorcontrib>Oohama, Yasutada</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jitsumatsu, Yutaka</au><au>Oohama, Yasutada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Iterative Algorithm for Computing the Correct Decoding Probability Exponent of Discrete Memoryless Channels</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>66</volume><issue>3</issue><spage>1585</spage><epage>1606</epage><pages>1585-1606</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Dueck and Körner's reliability function for discrete memoryless channels for rates above the capacity coincides with Arimoto's exponent of correct decoding probability. The two exponent functions are described by seemingly different optimization problems over the space of probability distributions. Arimoto gave an iterative algorithm for solving the optimization problem that appears in his exponent function. However, no algorithm to solve the optimization problem that appears in Dueck and Körner's exponent has been proposed. This paper proposes a new iterative algorithm for solving the minimization problem in Dueck and Körner's exponent. In the proposed algorithm, a double minimization form with respect to two joint distributions on input and output symbols is introduced. This double minimization is connected to another double minimization that appears in Arimoto's algorithm. Such a connection leads to a quadruple minimization problem, by which the match of Arimoto and Dueck-Körner exponents is easily proved.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2019.2950678</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3056-2402</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2020-03, Vol.66 (3), p.1585-1606 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_8889422 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Arimoto-Blahut algorithms channel coding under cost constraint Channels Codes correct decoding probability exponent Decoding Encoding Iterative algorithms Iterative methods Memoryless systems Minimization Monte Carlo methods Optimization Probability distribution Queuing theory strong converse |
title | A New Iterative Algorithm for Computing the Correct Decoding Probability Exponent of Discrete Memoryless Channels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Iterative%20Algorithm%20for%20Computing%20the%20Correct%20Decoding%20Probability%20Exponent%20of%20Discrete%20Memoryless%20Channels&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Jitsumatsu,%20Yutaka&rft.date=2020-03-01&rft.volume=66&rft.issue=3&rft.spage=1585&rft.epage=1606&rft.pages=1585-1606&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2019.2950678&rft_dat=%3Cproquest_ieee_%3E2358913177%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-36942c0a384d2ea60b5db8cc4ba90e434f717aa45d3825729582f0bd4f7ee8cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2358913177&rft_id=info:pmid/&rft_ieee_id=8889422&rfr_iscdi=true |