Loading…
Hybrid Sparse Array Beamforming Design for General Rank Signal Models
The paper considers sparse array design for receive beamforming achieving maximum signal-to-interference plus noise ratio (MaxSINR) for both single point source and multiple point sources, operating in an interference active environment. Unlike existing sparse design methods which either deal with s...
Saved in:
Published in: | IEEE transactions on signal processing 2019-12, Vol.67 (24), p.6215-6226 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper considers sparse array design for receive beamforming achieving maximum signal-to-interference plus noise ratio (MaxSINR) for both single point source and multiple point sources, operating in an interference active environment. Unlike existing sparse design methods which either deal with structured environment-independent or non-structured environment-dependent arrays, our method is a hybrid approach and seeks a full augumentable array that optimizes beamformer performance. This approach proves important for limited aperture that constrains the number of possible uniform grid points for sensor placements. The problem is formulated as quadratically constraint quadratic program (QCQP), with the cost function penalized with weighted l 1 -norm squared of the beamformer weight vector. Simulation results are presented to show the effectiveness of the proposed algorithms for array configurability in the case of both single and general rank signal correlation matrices. Performance comparisons among the proposed sparse array, the commonly used uniform arrays, arrays obtained by other design methods, and arrays designed without the augmentability constraint are provided. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2019.2952052 |