Loading…

Analysis and Optimal Design of High-Frequency and High-Efficiency Asymmetrical Half-Bridge Flyback Converters

The asymmetrical half-bridge (AHB) flyback converter is capable to achieve zero voltage switching and has lower voltage stress compared to the active clamp flyback converter. This topology gives much margin for components selection and transformer turns ratio design. It is well adapted to voltage st...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2020-10, Vol.67 (10), p.8312-8321
Main Authors: Li, Mingxiao, Ouyang, Ziwei, Andersen, Michael A. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The asymmetrical half-bridge (AHB) flyback converter is capable to achieve zero voltage switching and has lower voltage stress compared to the active clamp flyback converter. This topology gives much margin for components selection and transformer turns ratio design. It is well adapted to voltage step-down applications. However, the optimal design for AHB flyback converter taking current dip effect causing by components parasitic capacitances, and each component effect to power loss into consideration has never been explored. This article gives detailed operation and mathematical analyses of this effect. The optimal design procedure with the consideration of each circuit parameter is presented in this article. The transformer benefits low power loss from interleaving winding layout. A 56 W/inch 3 1 MHz 65 W prototype with 100-250 V input is built to verify the feasibility of the converter. Experimental results show the peak efficiency 96.5% is achieved with 127 V input and the whole system efficiency under the entire input voltage range is above 93%.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2019.2950845