Loading…
Cardiac Arrhythmia Detection from 2D ECG Images by Using Deep Learning Technique
Arrhythmia is irregular changes of normal heart rhythm and effective manual identifying of them require a lot of time and depends on experience of clinicians. This paper proposes deep learning-based novel 2-D convolutional neural network (CNN) approach for accurate classification of five different a...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Arrhythmia is irregular changes of normal heart rhythm and effective manual identifying of them require a lot of time and depends on experience of clinicians. This paper proposes deep learning-based novel 2-D convolutional neural network (CNN) approach for accurate classification of five different arrhythmia types. The performance of the proposed architecture is tested on Electrocardiogram (ECG) signals that are taken from MIT-BIH arrhythmia benchmark database. ECG signals was segmented into heartbeats and each of the heartbeats was converted into 2-D grayscale images as an input data for CNN structure. The accuracy of the proposed architecture was found as 97.42% on the training results revealed that the proposed 2-D CNN architecture with transformed 2-D ECG images can achieve highest accuracy without any preprocessing and feature extraction and feature selection stages for ECG signals. |
---|---|
ISSN: | 2687-7783 |
DOI: | 10.1109/TIPTEKNO.2019.8895011 |