Loading…

Cardiac Arrhythmia Detection from 2D ECG Images by Using Deep Learning Technique

Arrhythmia is irregular changes of normal heart rhythm and effective manual identifying of them require a lot of time and depends on experience of clinicians. This paper proposes deep learning-based novel 2-D convolutional neural network (CNN) approach for accurate classification of five different a...

Full description

Saved in:
Bibliographic Details
Main Authors: Izci, Elif, Ozdemir, Mehmet Akif, Degirmenci, Murside, Akan, Aydin
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Arrhythmia is irregular changes of normal heart rhythm and effective manual identifying of them require a lot of time and depends on experience of clinicians. This paper proposes deep learning-based novel 2-D convolutional neural network (CNN) approach for accurate classification of five different arrhythmia types. The performance of the proposed architecture is tested on Electrocardiogram (ECG) signals that are taken from MIT-BIH arrhythmia benchmark database. ECG signals was segmented into heartbeats and each of the heartbeats was converted into 2-D grayscale images as an input data for CNN structure. The accuracy of the proposed architecture was found as 97.42% on the training results revealed that the proposed 2-D CNN architecture with transformed 2-D ECG images can achieve highest accuracy without any preprocessing and feature extraction and feature selection stages for ECG signals.
ISSN:2687-7783
DOI:10.1109/TIPTEKNO.2019.8895011