Loading…

Low-power RRAM Device based 1T1R Array Design with CNTFET as Access Device

A SPICE model of metal oxide based resistive random access memory (RRAM) devices is demonstrated in this paper having bipolar switching characteristics and utilizing carbon nanotube field effect transistor (CNTFET) in a 1T1R configuration. The growth and the dissolution of the conductive filament in...

Full description

Saved in:
Bibliographic Details
Main Authors: Zahoor, Furqan, Zulkifli, Tun Zainal Azni, Khanday, Farooq Ahmad, Fida, Aabid Amin
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A SPICE model of metal oxide based resistive random access memory (RRAM) devices is demonstrated in this paper having bipolar switching characteristics and utilizing carbon nanotube field effect transistor (CNTFET) in a 1T1R configuration. The growth and the dissolution of the conductive filament in the oxide layer is the basis of the switching mechanism in this model. The model has been implemented in HSPICE simulation software for circuit level analysis. Initially, the simulation of memory cell with CNTFETs is carried out and later on 3*3 memory matrix is analyzed. The proposed design shows a reduction in power consumption as compared to RRAM cell utilizing metal oxide semiconductor field effect transistor (MOSFET) in a 1T1R configuration.
ISSN:2643-2447
DOI:10.1109/SCORED.2019.8896306