Loading…

Energy-Aware Application Placement in Mobile Edge Computing: A Stochastic Optimization Approach

The Quality of Service (QoS) in Mobile Edge Computing (MEC) systems is significantly dependent on the application offloading and placement decisions. Due to the movement of users in MEC networks, an optimal application placement might turn into the least efficient placement in few minutes. Thus, it...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on parallel and distributed systems 2020-04, Vol.31 (4), p.909-922
Main Authors: Badri, Hossein, Bahreini, Tayebeh, Grosu, Daniel, Yang, Kai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-b4026b4beaac8bf721a7d0fa3c974af642be417ff041807a1e2f09fb69822d803
cites cdi_FETCH-LOGICAL-c293t-b4026b4beaac8bf721a7d0fa3c974af642be417ff041807a1e2f09fb69822d803
container_end_page 922
container_issue 4
container_start_page 909
container_title IEEE transactions on parallel and distributed systems
container_volume 31
creator Badri, Hossein
Bahreini, Tayebeh
Grosu, Daniel
Yang, Kai
description The Quality of Service (QoS) in Mobile Edge Computing (MEC) systems is significantly dependent on the application offloading and placement decisions. Due to the movement of users in MEC networks, an optimal application placement might turn into the least efficient placement in few minutes. Thus, it is crucial to take the dynamics of the system into account when designing application placement mechanisms. On the other hand, energy consumption of servers is a significant component of the cost of services in MEC systems and must also be considered in the design of the mechanisms. In this article, we model the problem of energy-aware application placement in edge computing systems as a multi-stage stochastic program. The objective is to maximize the QoS of the system while taking into account the limited energy budget of the edge servers. To solve the problem, we design a novel parallel Sample Average Approximation (SAA) algorithm. We conduct an extensive experimental analysis to evaluate the performance of the proposed algorithm using real-world trace data.
doi_str_mv 10.1109/TPDS.2019.2950937
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8897679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8897679</ieee_id><sourcerecordid>2344252625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b4026b4beaac8bf721a7d0fa3c974af642be417ff041807a1e2f09fb69822d803</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_QNwEXE_NayaJu6HWB1RaaF2HTJq0KfMykyL11ztliqt7F-c7Bz4A7jGaYIzk03r5spoQhOWEyBRJyi_ACKepSAgW9LL_EUsTSbC8Bjddt0cIsxSxEVCz2obtMcl_dLAwb9vSGx19U8NlqY2tbB2hr-FnU_jSwtlma-G0qdpD9PX2GeZwFRuz0130Bi7a6Cv_O9B9U2i02d2CK6fLzt6d7xh8vc7W0_dkvnj7mObzxBBJY1IwRLKCFVZrIwrHCdZ8g5ymRnKmXcZIYRnmziGGBeIaW-KQdEUmBSEbgegYPA69_ez3wXZR7ZtDqPtJRShjJCUZSfsUHlImNF0XrFNt8JUOR4WROnlUJ4_q5FGdPfbMw8B4a-1_XgjJMy7pH4CRbxI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344252625</pqid></control><display><type>article</type><title>Energy-Aware Application Placement in Mobile Edge Computing: A Stochastic Optimization Approach</title><source>IEEE Xplore (Online service)</source><creator>Badri, Hossein ; Bahreini, Tayebeh ; Grosu, Daniel ; Yang, Kai</creator><creatorcontrib>Badri, Hossein ; Bahreini, Tayebeh ; Grosu, Daniel ; Yang, Kai</creatorcontrib><description>The Quality of Service (QoS) in Mobile Edge Computing (MEC) systems is significantly dependent on the application offloading and placement decisions. Due to the movement of users in MEC networks, an optimal application placement might turn into the least efficient placement in few minutes. Thus, it is crucial to take the dynamics of the system into account when designing application placement mechanisms. On the other hand, energy consumption of servers is a significant component of the cost of services in MEC systems and must also be considered in the design of the mechanisms. In this article, we model the problem of energy-aware application placement in edge computing systems as a multi-stage stochastic program. The objective is to maximize the QoS of the system while taking into account the limited energy budget of the edge servers. To solve the problem, we design a novel parallel Sample Average Approximation (SAA) algorithm. We conduct an extensive experimental analysis to evaluate the performance of the proposed algorithm using real-world trace data.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2019.2950937</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cloud computing ; Computational modeling ; Edge computing ; Energy budget ; Energy consumption ; Energy management ; energy-aware application placement ; Mobile computing ; Mobile edge computing ; multi-stage stochastic programming ; Optimization ; parallel algorithms ; Placement ; Quality of service ; sample average approximation ; Servers ; Stochastic processes</subject><ispartof>IEEE transactions on parallel and distributed systems, 2020-04, Vol.31 (4), p.909-922</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b4026b4beaac8bf721a7d0fa3c974af642be417ff041807a1e2f09fb69822d803</citedby><cites>FETCH-LOGICAL-c293t-b4026b4beaac8bf721a7d0fa3c974af642be417ff041807a1e2f09fb69822d803</cites><orcidid>0000-0003-2340-5433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8897679$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Badri, Hossein</creatorcontrib><creatorcontrib>Bahreini, Tayebeh</creatorcontrib><creatorcontrib>Grosu, Daniel</creatorcontrib><creatorcontrib>Yang, Kai</creatorcontrib><title>Energy-Aware Application Placement in Mobile Edge Computing: A Stochastic Optimization Approach</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>The Quality of Service (QoS) in Mobile Edge Computing (MEC) systems is significantly dependent on the application offloading and placement decisions. Due to the movement of users in MEC networks, an optimal application placement might turn into the least efficient placement in few minutes. Thus, it is crucial to take the dynamics of the system into account when designing application placement mechanisms. On the other hand, energy consumption of servers is a significant component of the cost of services in MEC systems and must also be considered in the design of the mechanisms. In this article, we model the problem of energy-aware application placement in edge computing systems as a multi-stage stochastic program. The objective is to maximize the QoS of the system while taking into account the limited energy budget of the edge servers. To solve the problem, we design a novel parallel Sample Average Approximation (SAA) algorithm. We conduct an extensive experimental analysis to evaluate the performance of the proposed algorithm using real-world trace data.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Computational modeling</subject><subject>Edge computing</subject><subject>Energy budget</subject><subject>Energy consumption</subject><subject>Energy management</subject><subject>energy-aware application placement</subject><subject>Mobile computing</subject><subject>Mobile edge computing</subject><subject>multi-stage stochastic programming</subject><subject>Optimization</subject><subject>parallel algorithms</subject><subject>Placement</subject><subject>Quality of service</subject><subject>sample average approximation</subject><subject>Servers</subject><subject>Stochastic processes</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKs_QNwEXE_NayaJu6HWB1RaaF2HTJq0KfMykyL11ztliqt7F-c7Bz4A7jGaYIzk03r5spoQhOWEyBRJyi_ACKepSAgW9LL_EUsTSbC8Bjddt0cIsxSxEVCz2obtMcl_dLAwb9vSGx19U8NlqY2tbB2hr-FnU_jSwtlma-G0qdpD9PX2GeZwFRuz0130Bi7a6Cv_O9B9U2i02d2CK6fLzt6d7xh8vc7W0_dkvnj7mObzxBBJY1IwRLKCFVZrIwrHCdZ8g5ymRnKmXcZIYRnmziGGBeIaW-KQdEUmBSEbgegYPA69_ez3wXZR7ZtDqPtJRShjJCUZSfsUHlImNF0XrFNt8JUOR4WROnlUJ4_q5FGdPfbMw8B4a-1_XgjJMy7pH4CRbxI</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Badri, Hossein</creator><creator>Bahreini, Tayebeh</creator><creator>Grosu, Daniel</creator><creator>Yang, Kai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2340-5433</orcidid></search><sort><creationdate>20200401</creationdate><title>Energy-Aware Application Placement in Mobile Edge Computing: A Stochastic Optimization Approach</title><author>Badri, Hossein ; Bahreini, Tayebeh ; Grosu, Daniel ; Yang, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b4026b4beaac8bf721a7d0fa3c974af642be417ff041807a1e2f09fb69822d803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Computational modeling</topic><topic>Edge computing</topic><topic>Energy budget</topic><topic>Energy consumption</topic><topic>Energy management</topic><topic>energy-aware application placement</topic><topic>Mobile computing</topic><topic>Mobile edge computing</topic><topic>multi-stage stochastic programming</topic><topic>Optimization</topic><topic>parallel algorithms</topic><topic>Placement</topic><topic>Quality of service</topic><topic>sample average approximation</topic><topic>Servers</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badri, Hossein</creatorcontrib><creatorcontrib>Bahreini, Tayebeh</creatorcontrib><creatorcontrib>Grosu, Daniel</creatorcontrib><creatorcontrib>Yang, Kai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badri, Hossein</au><au>Bahreini, Tayebeh</au><au>Grosu, Daniel</au><au>Yang, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Aware Application Placement in Mobile Edge Computing: A Stochastic Optimization Approach</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>31</volume><issue>4</issue><spage>909</spage><epage>922</epage><pages>909-922</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>The Quality of Service (QoS) in Mobile Edge Computing (MEC) systems is significantly dependent on the application offloading and placement decisions. Due to the movement of users in MEC networks, an optimal application placement might turn into the least efficient placement in few minutes. Thus, it is crucial to take the dynamics of the system into account when designing application placement mechanisms. On the other hand, energy consumption of servers is a significant component of the cost of services in MEC systems and must also be considered in the design of the mechanisms. In this article, we model the problem of energy-aware application placement in edge computing systems as a multi-stage stochastic program. The objective is to maximize the QoS of the system while taking into account the limited energy budget of the edge servers. To solve the problem, we design a novel parallel Sample Average Approximation (SAA) algorithm. We conduct an extensive experimental analysis to evaluate the performance of the proposed algorithm using real-world trace data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2019.2950937</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2340-5433</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1045-9219
ispartof IEEE transactions on parallel and distributed systems, 2020-04, Vol.31 (4), p.909-922
issn 1045-9219
1558-2183
language eng
recordid cdi_ieee_primary_8897679
source IEEE Xplore (Online service)
subjects Algorithms
Cloud computing
Computational modeling
Edge computing
Energy budget
Energy consumption
Energy management
energy-aware application placement
Mobile computing
Mobile edge computing
multi-stage stochastic programming
Optimization
parallel algorithms
Placement
Quality of service
sample average approximation
Servers
Stochastic processes
title Energy-Aware Application Placement in Mobile Edge Computing: A Stochastic Optimization Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A24%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Aware%20Application%20Placement%20in%20Mobile%20Edge%20Computing:%20A%20Stochastic%20Optimization%20Approach&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Badri,%20Hossein&rft.date=2020-04-01&rft.volume=31&rft.issue=4&rft.spage=909&rft.epage=922&rft.pages=909-922&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2019.2950937&rft_dat=%3Cproquest_ieee_%3E2344252625%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-b4026b4beaac8bf721a7d0fa3c974af642be417ff041807a1e2f09fb69822d803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2344252625&rft_id=info:pmid/&rft_ieee_id=8897679&rfr_iscdi=true