Loading…
Energy-Aware Application Placement in Mobile Edge Computing: A Stochastic Optimization Approach
The Quality of Service (QoS) in Mobile Edge Computing (MEC) systems is significantly dependent on the application offloading and placement decisions. Due to the movement of users in MEC networks, an optimal application placement might turn into the least efficient placement in few minutes. Thus, it...
Saved in:
Published in: | IEEE transactions on parallel and distributed systems 2020-04, Vol.31 (4), p.909-922 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-b4026b4beaac8bf721a7d0fa3c974af642be417ff041807a1e2f09fb69822d803 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-b4026b4beaac8bf721a7d0fa3c974af642be417ff041807a1e2f09fb69822d803 |
container_end_page | 922 |
container_issue | 4 |
container_start_page | 909 |
container_title | IEEE transactions on parallel and distributed systems |
container_volume | 31 |
creator | Badri, Hossein Bahreini, Tayebeh Grosu, Daniel Yang, Kai |
description | The Quality of Service (QoS) in Mobile Edge Computing (MEC) systems is significantly dependent on the application offloading and placement decisions. Due to the movement of users in MEC networks, an optimal application placement might turn into the least efficient placement in few minutes. Thus, it is crucial to take the dynamics of the system into account when designing application placement mechanisms. On the other hand, energy consumption of servers is a significant component of the cost of services in MEC systems and must also be considered in the design of the mechanisms. In this article, we model the problem of energy-aware application placement in edge computing systems as a multi-stage stochastic program. The objective is to maximize the QoS of the system while taking into account the limited energy budget of the edge servers. To solve the problem, we design a novel parallel Sample Average Approximation (SAA) algorithm. We conduct an extensive experimental analysis to evaluate the performance of the proposed algorithm using real-world trace data. |
doi_str_mv | 10.1109/TPDS.2019.2950937 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8897679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8897679</ieee_id><sourcerecordid>2344252625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b4026b4beaac8bf721a7d0fa3c974af642be417ff041807a1e2f09fb69822d803</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_QNwEXE_NayaJu6HWB1RaaF2HTJq0KfMykyL11ztliqt7F-c7Bz4A7jGaYIzk03r5spoQhOWEyBRJyi_ACKepSAgW9LL_EUsTSbC8Bjddt0cIsxSxEVCz2obtMcl_dLAwb9vSGx19U8NlqY2tbB2hr-FnU_jSwtlma-G0qdpD9PX2GeZwFRuz0130Bi7a6Cv_O9B9U2i02d2CK6fLzt6d7xh8vc7W0_dkvnj7mObzxBBJY1IwRLKCFVZrIwrHCdZ8g5ymRnKmXcZIYRnmziGGBeIaW-KQdEUmBSEbgegYPA69_ez3wXZR7ZtDqPtJRShjJCUZSfsUHlImNF0XrFNt8JUOR4WROnlUJ4_q5FGdPfbMw8B4a-1_XgjJMy7pH4CRbxI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344252625</pqid></control><display><type>article</type><title>Energy-Aware Application Placement in Mobile Edge Computing: A Stochastic Optimization Approach</title><source>IEEE Xplore (Online service)</source><creator>Badri, Hossein ; Bahreini, Tayebeh ; Grosu, Daniel ; Yang, Kai</creator><creatorcontrib>Badri, Hossein ; Bahreini, Tayebeh ; Grosu, Daniel ; Yang, Kai</creatorcontrib><description>The Quality of Service (QoS) in Mobile Edge Computing (MEC) systems is significantly dependent on the application offloading and placement decisions. Due to the movement of users in MEC networks, an optimal application placement might turn into the least efficient placement in few minutes. Thus, it is crucial to take the dynamics of the system into account when designing application placement mechanisms. On the other hand, energy consumption of servers is a significant component of the cost of services in MEC systems and must also be considered in the design of the mechanisms. In this article, we model the problem of energy-aware application placement in edge computing systems as a multi-stage stochastic program. The objective is to maximize the QoS of the system while taking into account the limited energy budget of the edge servers. To solve the problem, we design a novel parallel Sample Average Approximation (SAA) algorithm. We conduct an extensive experimental analysis to evaluate the performance of the proposed algorithm using real-world trace data.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2019.2950937</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cloud computing ; Computational modeling ; Edge computing ; Energy budget ; Energy consumption ; Energy management ; energy-aware application placement ; Mobile computing ; Mobile edge computing ; multi-stage stochastic programming ; Optimization ; parallel algorithms ; Placement ; Quality of service ; sample average approximation ; Servers ; Stochastic processes</subject><ispartof>IEEE transactions on parallel and distributed systems, 2020-04, Vol.31 (4), p.909-922</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b4026b4beaac8bf721a7d0fa3c974af642be417ff041807a1e2f09fb69822d803</citedby><cites>FETCH-LOGICAL-c293t-b4026b4beaac8bf721a7d0fa3c974af642be417ff041807a1e2f09fb69822d803</cites><orcidid>0000-0003-2340-5433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8897679$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Badri, Hossein</creatorcontrib><creatorcontrib>Bahreini, Tayebeh</creatorcontrib><creatorcontrib>Grosu, Daniel</creatorcontrib><creatorcontrib>Yang, Kai</creatorcontrib><title>Energy-Aware Application Placement in Mobile Edge Computing: A Stochastic Optimization Approach</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>The Quality of Service (QoS) in Mobile Edge Computing (MEC) systems is significantly dependent on the application offloading and placement decisions. Due to the movement of users in MEC networks, an optimal application placement might turn into the least efficient placement in few minutes. Thus, it is crucial to take the dynamics of the system into account when designing application placement mechanisms. On the other hand, energy consumption of servers is a significant component of the cost of services in MEC systems and must also be considered in the design of the mechanisms. In this article, we model the problem of energy-aware application placement in edge computing systems as a multi-stage stochastic program. The objective is to maximize the QoS of the system while taking into account the limited energy budget of the edge servers. To solve the problem, we design a novel parallel Sample Average Approximation (SAA) algorithm. We conduct an extensive experimental analysis to evaluate the performance of the proposed algorithm using real-world trace data.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Computational modeling</subject><subject>Edge computing</subject><subject>Energy budget</subject><subject>Energy consumption</subject><subject>Energy management</subject><subject>energy-aware application placement</subject><subject>Mobile computing</subject><subject>Mobile edge computing</subject><subject>multi-stage stochastic programming</subject><subject>Optimization</subject><subject>parallel algorithms</subject><subject>Placement</subject><subject>Quality of service</subject><subject>sample average approximation</subject><subject>Servers</subject><subject>Stochastic processes</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKs_QNwEXE_NayaJu6HWB1RaaF2HTJq0KfMykyL11ztliqt7F-c7Bz4A7jGaYIzk03r5spoQhOWEyBRJyi_ACKepSAgW9LL_EUsTSbC8Bjddt0cIsxSxEVCz2obtMcl_dLAwb9vSGx19U8NlqY2tbB2hr-FnU_jSwtlma-G0qdpD9PX2GeZwFRuz0130Bi7a6Cv_O9B9U2i02d2CK6fLzt6d7xh8vc7W0_dkvnj7mObzxBBJY1IwRLKCFVZrIwrHCdZ8g5ymRnKmXcZIYRnmziGGBeIaW-KQdEUmBSEbgegYPA69_ez3wXZR7ZtDqPtJRShjJCUZSfsUHlImNF0XrFNt8JUOR4WROnlUJ4_q5FGdPfbMw8B4a-1_XgjJMy7pH4CRbxI</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Badri, Hossein</creator><creator>Bahreini, Tayebeh</creator><creator>Grosu, Daniel</creator><creator>Yang, Kai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2340-5433</orcidid></search><sort><creationdate>20200401</creationdate><title>Energy-Aware Application Placement in Mobile Edge Computing: A Stochastic Optimization Approach</title><author>Badri, Hossein ; Bahreini, Tayebeh ; Grosu, Daniel ; Yang, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b4026b4beaac8bf721a7d0fa3c974af642be417ff041807a1e2f09fb69822d803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Computational modeling</topic><topic>Edge computing</topic><topic>Energy budget</topic><topic>Energy consumption</topic><topic>Energy management</topic><topic>energy-aware application placement</topic><topic>Mobile computing</topic><topic>Mobile edge computing</topic><topic>multi-stage stochastic programming</topic><topic>Optimization</topic><topic>parallel algorithms</topic><topic>Placement</topic><topic>Quality of service</topic><topic>sample average approximation</topic><topic>Servers</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badri, Hossein</creatorcontrib><creatorcontrib>Bahreini, Tayebeh</creatorcontrib><creatorcontrib>Grosu, Daniel</creatorcontrib><creatorcontrib>Yang, Kai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badri, Hossein</au><au>Bahreini, Tayebeh</au><au>Grosu, Daniel</au><au>Yang, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Aware Application Placement in Mobile Edge Computing: A Stochastic Optimization Approach</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>31</volume><issue>4</issue><spage>909</spage><epage>922</epage><pages>909-922</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>The Quality of Service (QoS) in Mobile Edge Computing (MEC) systems is significantly dependent on the application offloading and placement decisions. Due to the movement of users in MEC networks, an optimal application placement might turn into the least efficient placement in few minutes. Thus, it is crucial to take the dynamics of the system into account when designing application placement mechanisms. On the other hand, energy consumption of servers is a significant component of the cost of services in MEC systems and must also be considered in the design of the mechanisms. In this article, we model the problem of energy-aware application placement in edge computing systems as a multi-stage stochastic program. The objective is to maximize the QoS of the system while taking into account the limited energy budget of the edge servers. To solve the problem, we design a novel parallel Sample Average Approximation (SAA) algorithm. We conduct an extensive experimental analysis to evaluate the performance of the proposed algorithm using real-world trace data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2019.2950937</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2340-5433</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-9219 |
ispartof | IEEE transactions on parallel and distributed systems, 2020-04, Vol.31 (4), p.909-922 |
issn | 1045-9219 1558-2183 |
language | eng |
recordid | cdi_ieee_primary_8897679 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Cloud computing Computational modeling Edge computing Energy budget Energy consumption Energy management energy-aware application placement Mobile computing Mobile edge computing multi-stage stochastic programming Optimization parallel algorithms Placement Quality of service sample average approximation Servers Stochastic processes |
title | Energy-Aware Application Placement in Mobile Edge Computing: A Stochastic Optimization Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A24%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Aware%20Application%20Placement%20in%20Mobile%20Edge%20Computing:%20A%20Stochastic%20Optimization%20Approach&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Badri,%20Hossein&rft.date=2020-04-01&rft.volume=31&rft.issue=4&rft.spage=909&rft.epage=922&rft.pages=909-922&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2019.2950937&rft_dat=%3Cproquest_ieee_%3E2344252625%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-b4026b4beaac8bf721a7d0fa3c974af642be417ff041807a1e2f09fb69822d803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2344252625&rft_id=info:pmid/&rft_ieee_id=8897679&rfr_iscdi=true |