Loading…

An Integrated Biosensor System With a High-Density Microelectrode Array for Real-Time Electrochemical Imaging

Electrochemical methods have been shown to be advantageous to life sciences by supporting studies and discoveries in metabolism activities, DNA analysis, and neurotransmitter signaling. Meanwhile, the integration of Microelectrode Array (MEA) and the accessibility of CMOS technology permit high-dens...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical circuits and systems 2020-02, Vol.14 (1), p.20-35
Main Authors: Tedjo, William, Chen, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-2848d113cc3f61e4b3d33bf311df883df42ff180c1c292a763a7d856798749ed3
cites cdi_FETCH-LOGICAL-c395t-2848d113cc3f61e4b3d33bf311df883df42ff180c1c292a763a7d856798749ed3
container_end_page 35
container_issue 1
container_start_page 20
container_title IEEE transactions on biomedical circuits and systems
container_volume 14
creator Tedjo, William
Chen, Thomas
description Electrochemical methods have been shown to be advantageous to life sciences by supporting studies and discoveries in metabolism activities, DNA analysis, and neurotransmitter signaling. Meanwhile, the integration of Microelectrode Array (MEA) and the accessibility of CMOS technology permit high-density electrochemical sensing method. This paper describes an electrochemical imaging system equipped with a custom CMOS microchip. The microchip holds a 3.6 mm × 3.6 mm sensing area containing 16,064 Pt MEA, the associated 16,064 integrated read channels, and digital control circuits. The novel three-electrode system geometry with a 27.5 μm spatial pitch enables cellular level chemical gradient imaging of bio-samples. The noise level of the on-chip read channel array allows amperometric detection of neurotransmitters such as norepinephrine (NE) with concentrations from 4 μM to 512 μM with 4.7 pA/μM sensitivity (R 2 = 0.98). Electrochemical response to dissolved oxygen (DO) concentration was also characterized by deoxygenated deionized water containing 5% to 80% of the ambient oxygen concentrations with 86 pA/mg/L sensitivity (R 2 = 0.89). The system also demonstrated selectivity to different target analytes using cyclic voltammetry method to simultaneously detect NE and uric acid. Also, a custom indium tin oxide with deposited Au glass electrode was integrated into the microfluidic system to enable pH measurement, ensuring the viability of bio-samples during experiments. Electrochemical images confirm the spatiotemporal performance at four frames per second while maintaining the sensitivity to target analytes. Finally, the overall system is controlled and continuously monitored by a MATLAB-based custom user interface, which is optimized for real-time high spatiotemporal resolution chemical imaging.
doi_str_mv 10.1109/TBCAS.2019.2953579
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8901972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8901972</ieee_id><sourcerecordid>2317583942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-2848d113cc3f61e4b3d33bf311df883df42ff180c1c292a763a7d856798749ed3</originalsourceid><addsrcrecordid>eNpdkUtPGzEUhS1EBZTyB0BClrrpZoKfY3sZAi2RqJBKKpYjx75OjOZB7cki_x6nSVl05Sud7xz53oPQJSUTSom5WdzOps8TRqiZMCO5VOYInVEjSGWMIce7mbNKSCFP0eecXwmRNTPsBJ1yqiRlkpyhbtrjeT_CKtkRPL6NQ4Y-Dwk_b_MIHX6J4xpb_BBX6-quKHHc4p_RpQFacGMaPOBpSnaLQ_H8AttWi9gBvt-rbg1ddLbF886uYr_6gj4F22a4OLzn6Pf3-8XsoXp8-jGfTR8rx40cK6aF9pRy53ioKYgl95wvA6fUB625D4KFQDVx1JV9rKq5VV7LWhmthAHPz9G3fe5bGv5sII9NF7ODtrU9DJvcsN0BNDeCFfTrf-jrsEl9-V2hpKiJUpoXiu2psnnOCULzlmJn07ahpNmV0fwto9mV0RzKKKbrQ_Rm2YH_sPy7fgGu9kAEgA9ZmxKiGH8H3mmNLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354607783</pqid></control><display><type>article</type><title>An Integrated Biosensor System With a High-Density Microelectrode Array for Real-Time Electrochemical Imaging</title><source>IEEE Xplore (Online service)</source><creator>Tedjo, William ; Chen, Thomas</creator><creatorcontrib>Tedjo, William ; Chen, Thomas</creatorcontrib><description>Electrochemical methods have been shown to be advantageous to life sciences by supporting studies and discoveries in metabolism activities, DNA analysis, and neurotransmitter signaling. Meanwhile, the integration of Microelectrode Array (MEA) and the accessibility of CMOS technology permit high-density electrochemical sensing method. This paper describes an electrochemical imaging system equipped with a custom CMOS microchip. The microchip holds a 3.6 mm × 3.6 mm sensing area containing 16,064 Pt MEA, the associated 16,064 integrated read channels, and digital control circuits. The novel three-electrode system geometry with a 27.5 μm spatial pitch enables cellular level chemical gradient imaging of bio-samples. The noise level of the on-chip read channel array allows amperometric detection of neurotransmitters such as norepinephrine (NE) with concentrations from 4 μM to 512 μM with 4.7 pA/μM sensitivity (R 2 = 0.98). Electrochemical response to dissolved oxygen (DO) concentration was also characterized by deoxygenated deionized water containing 5% to 80% of the ambient oxygen concentrations with 86 pA/mg/L sensitivity (R 2 = 0.89). The system also demonstrated selectivity to different target analytes using cyclic voltammetry method to simultaneously detect NE and uric acid. Also, a custom indium tin oxide with deposited Au glass electrode was integrated into the microfluidic system to enable pH measurement, ensuring the viability of bio-samples during experiments. Electrochemical images confirm the spatiotemporal performance at four frames per second while maintaining the sensitivity to target analytes. Finally, the overall system is controlled and continuously monitored by a MATLAB-based custom user interface, which is optimized for real-time high spatiotemporal resolution chemical imaging.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2019.2953579</identifier><identifier>PMID: 31751250</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Amperometry ; Analytical chemistry ; Arrays ; biosensor system integration ; Biosensors ; Chemicals ; CMOS ; CMOS circuit design ; Deionization ; Density ; Deoxygenation ; Dissolved oxygen ; Electrical measurement ; Electrochemistry ; Electrodes ; Frames per second ; Frequency ; Imaging ; Indium tin oxides ; instrumentation ; Integrated circuits ; microelectrode array ; Microelectrodes ; microfluidic ; Microfluidics ; Multiplexing ; Neurotransmitters ; Noise levels ; Norepinephrine ; Organic chemistry ; Real time ; Selectivity ; Semiconductors ; Sensitivity analysis ; Tin ; Uric acid ; Viability ; voltammetry</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2020-02, Vol.14 (1), p.20-35</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-2848d113cc3f61e4b3d33bf311df883df42ff180c1c292a763a7d856798749ed3</citedby><cites>FETCH-LOGICAL-c395t-2848d113cc3f61e4b3d33bf311df883df42ff180c1c292a763a7d856798749ed3</cites><orcidid>0000-0003-3286-034X ; 0000-0003-4027-7509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8901972$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31751250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tedjo, William</creatorcontrib><creatorcontrib>Chen, Thomas</creatorcontrib><title>An Integrated Biosensor System With a High-Density Microelectrode Array for Real-Time Electrochemical Imaging</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>Electrochemical methods have been shown to be advantageous to life sciences by supporting studies and discoveries in metabolism activities, DNA analysis, and neurotransmitter signaling. Meanwhile, the integration of Microelectrode Array (MEA) and the accessibility of CMOS technology permit high-density electrochemical sensing method. This paper describes an electrochemical imaging system equipped with a custom CMOS microchip. The microchip holds a 3.6 mm × 3.6 mm sensing area containing 16,064 Pt MEA, the associated 16,064 integrated read channels, and digital control circuits. The novel three-electrode system geometry with a 27.5 μm spatial pitch enables cellular level chemical gradient imaging of bio-samples. The noise level of the on-chip read channel array allows amperometric detection of neurotransmitters such as norepinephrine (NE) with concentrations from 4 μM to 512 μM with 4.7 pA/μM sensitivity (R 2 = 0.98). Electrochemical response to dissolved oxygen (DO) concentration was also characterized by deoxygenated deionized water containing 5% to 80% of the ambient oxygen concentrations with 86 pA/mg/L sensitivity (R 2 = 0.89). The system also demonstrated selectivity to different target analytes using cyclic voltammetry method to simultaneously detect NE and uric acid. Also, a custom indium tin oxide with deposited Au glass electrode was integrated into the microfluidic system to enable pH measurement, ensuring the viability of bio-samples during experiments. Electrochemical images confirm the spatiotemporal performance at four frames per second while maintaining the sensitivity to target analytes. Finally, the overall system is controlled and continuously monitored by a MATLAB-based custom user interface, which is optimized for real-time high spatiotemporal resolution chemical imaging.</description><subject>Amperometry</subject><subject>Analytical chemistry</subject><subject>Arrays</subject><subject>biosensor system integration</subject><subject>Biosensors</subject><subject>Chemicals</subject><subject>CMOS</subject><subject>CMOS circuit design</subject><subject>Deionization</subject><subject>Density</subject><subject>Deoxygenation</subject><subject>Dissolved oxygen</subject><subject>Electrical measurement</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Frames per second</subject><subject>Frequency</subject><subject>Imaging</subject><subject>Indium tin oxides</subject><subject>instrumentation</subject><subject>Integrated circuits</subject><subject>microelectrode array</subject><subject>Microelectrodes</subject><subject>microfluidic</subject><subject>Microfluidics</subject><subject>Multiplexing</subject><subject>Neurotransmitters</subject><subject>Noise levels</subject><subject>Norepinephrine</subject><subject>Organic chemistry</subject><subject>Real time</subject><subject>Selectivity</subject><subject>Semiconductors</subject><subject>Sensitivity analysis</subject><subject>Tin</subject><subject>Uric acid</subject><subject>Viability</subject><subject>voltammetry</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkUtPGzEUhS1EBZTyB0BClrrpZoKfY3sZAi2RqJBKKpYjx75OjOZB7cki_x6nSVl05Sud7xz53oPQJSUTSom5WdzOps8TRqiZMCO5VOYInVEjSGWMIce7mbNKSCFP0eecXwmRNTPsBJ1yqiRlkpyhbtrjeT_CKtkRPL6NQ4Y-Dwk_b_MIHX6J4xpb_BBX6-quKHHc4p_RpQFacGMaPOBpSnaLQ_H8AttWi9gBvt-rbg1ddLbF886uYr_6gj4F22a4OLzn6Pf3-8XsoXp8-jGfTR8rx40cK6aF9pRy53ioKYgl95wvA6fUB625D4KFQDVx1JV9rKq5VV7LWhmthAHPz9G3fe5bGv5sII9NF7ODtrU9DJvcsN0BNDeCFfTrf-jrsEl9-V2hpKiJUpoXiu2psnnOCULzlmJn07ahpNmV0fwto9mV0RzKKKbrQ_Rm2YH_sPy7fgGu9kAEgA9ZmxKiGH8H3mmNLA</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Tedjo, William</creator><creator>Chen, Thomas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3286-034X</orcidid><orcidid>https://orcid.org/0000-0003-4027-7509</orcidid></search><sort><creationdate>20200201</creationdate><title>An Integrated Biosensor System With a High-Density Microelectrode Array for Real-Time Electrochemical Imaging</title><author>Tedjo, William ; Chen, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-2848d113cc3f61e4b3d33bf311df883df42ff180c1c292a763a7d856798749ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amperometry</topic><topic>Analytical chemistry</topic><topic>Arrays</topic><topic>biosensor system integration</topic><topic>Biosensors</topic><topic>Chemicals</topic><topic>CMOS</topic><topic>CMOS circuit design</topic><topic>Deionization</topic><topic>Density</topic><topic>Deoxygenation</topic><topic>Dissolved oxygen</topic><topic>Electrical measurement</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Frames per second</topic><topic>Frequency</topic><topic>Imaging</topic><topic>Indium tin oxides</topic><topic>instrumentation</topic><topic>Integrated circuits</topic><topic>microelectrode array</topic><topic>Microelectrodes</topic><topic>microfluidic</topic><topic>Microfluidics</topic><topic>Multiplexing</topic><topic>Neurotransmitters</topic><topic>Noise levels</topic><topic>Norepinephrine</topic><topic>Organic chemistry</topic><topic>Real time</topic><topic>Selectivity</topic><topic>Semiconductors</topic><topic>Sensitivity analysis</topic><topic>Tin</topic><topic>Uric acid</topic><topic>Viability</topic><topic>voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tedjo, William</creatorcontrib><creatorcontrib>Chen, Thomas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tedjo, William</au><au>Chen, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Integrated Biosensor System With a High-Density Microelectrode Array for Real-Time Electrochemical Imaging</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>14</volume><issue>1</issue><spage>20</spage><epage>35</epage><pages>20-35</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>Electrochemical methods have been shown to be advantageous to life sciences by supporting studies and discoveries in metabolism activities, DNA analysis, and neurotransmitter signaling. Meanwhile, the integration of Microelectrode Array (MEA) and the accessibility of CMOS technology permit high-density electrochemical sensing method. This paper describes an electrochemical imaging system equipped with a custom CMOS microchip. The microchip holds a 3.6 mm × 3.6 mm sensing area containing 16,064 Pt MEA, the associated 16,064 integrated read channels, and digital control circuits. The novel three-electrode system geometry with a 27.5 μm spatial pitch enables cellular level chemical gradient imaging of bio-samples. The noise level of the on-chip read channel array allows amperometric detection of neurotransmitters such as norepinephrine (NE) with concentrations from 4 μM to 512 μM with 4.7 pA/μM sensitivity (R 2 = 0.98). Electrochemical response to dissolved oxygen (DO) concentration was also characterized by deoxygenated deionized water containing 5% to 80% of the ambient oxygen concentrations with 86 pA/mg/L sensitivity (R 2 = 0.89). The system also demonstrated selectivity to different target analytes using cyclic voltammetry method to simultaneously detect NE and uric acid. Also, a custom indium tin oxide with deposited Au glass electrode was integrated into the microfluidic system to enable pH measurement, ensuring the viability of bio-samples during experiments. Electrochemical images confirm the spatiotemporal performance at four frames per second while maintaining the sensitivity to target analytes. Finally, the overall system is controlled and continuously monitored by a MATLAB-based custom user interface, which is optimized for real-time high spatiotemporal resolution chemical imaging.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31751250</pmid><doi>10.1109/TBCAS.2019.2953579</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3286-034X</orcidid><orcidid>https://orcid.org/0000-0003-4027-7509</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-4545
ispartof IEEE transactions on biomedical circuits and systems, 2020-02, Vol.14 (1), p.20-35
issn 1932-4545
1940-9990
language eng
recordid cdi_ieee_primary_8901972
source IEEE Xplore (Online service)
subjects Amperometry
Analytical chemistry
Arrays
biosensor system integration
Biosensors
Chemicals
CMOS
CMOS circuit design
Deionization
Density
Deoxygenation
Dissolved oxygen
Electrical measurement
Electrochemistry
Electrodes
Frames per second
Frequency
Imaging
Indium tin oxides
instrumentation
Integrated circuits
microelectrode array
Microelectrodes
microfluidic
Microfluidics
Multiplexing
Neurotransmitters
Noise levels
Norepinephrine
Organic chemistry
Real time
Selectivity
Semiconductors
Sensitivity analysis
Tin
Uric acid
Viability
voltammetry
title An Integrated Biosensor System With a High-Density Microelectrode Array for Real-Time Electrochemical Imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Integrated%20Biosensor%20System%20With%20a%20High-Density%20Microelectrode%20Array%20for%20Real-Time%20Electrochemical%20Imaging&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Tedjo,%20William&rft.date=2020-02-01&rft.volume=14&rft.issue=1&rft.spage=20&rft.epage=35&rft.pages=20-35&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2019.2953579&rft_dat=%3Cproquest_ieee_%3E2317583942%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-2848d113cc3f61e4b3d33bf311df883df42ff180c1c292a763a7d856798749ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2354607783&rft_id=info:pmid/31751250&rft_ieee_id=8901972&rfr_iscdi=true