Loading…

Pyramidal Optical Flow Method-Based Lightweight Monocular 3D Vascular Point Cloud Reconstruction

We propose a method for reconstructing a 3D point cloud of the organ model based on optical flow and take the 3D cardiovascular model reconstruction as an example. This optical-flow distribution based 3D point cloud reconstruction method is divided into four steps. Firstly, we employ the Coey filter...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.167420-167428
Main Authors: Liu, Chang, Xu, Shipu, Liu, Xiaojun, Xie, Ning, Zhang, Zhao, Lin, Huangxing, Hu, Yaqiong, Ng, Eyk, Chen, Dangzhao, Zhao, Lei, Lu, Yifan, Dai, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c358t-52e9411ba32cf90af57bf79a98cbbe9cc015240b6e15b2c94819e5ec8255dc1b3
container_end_page 167428
container_issue
container_start_page 167420
container_title IEEE access
container_volume 7
creator Liu, Chang
Xu, Shipu
Liu, Xiaojun
Xie, Ning
Zhang, Zhao
Lin, Huangxing
Hu, Yaqiong
Ng, Eyk
Chen, Dangzhao
Zhao, Lei
Lu, Yifan
Dai, Xin
description We propose a method for reconstructing a 3D point cloud of the organ model based on optical flow and take the 3D cardiovascular model reconstruction as an example. This optical-flow distribution based 3D point cloud reconstruction method is divided into four steps. Firstly, we employ the Coey filter to remove the noise points and improve the resolution of the raw images. Secondly, we implement the Shi-Tomasi method to extract the feature points from these filtered images. Thirdly, we remove the redundancy in the feature point set by the optical flow distributions. Finally, we converted the obtained feature points from 2D to 3D through the optical flow distribution and then reconstructed a 3D point cloud of the medical organ. With the help of our 3D representation, doctors and patients can view the 3D medical models on the Web. The final result on the Web shows the proposed method is feasible and superior.
doi_str_mv 10.1109/ACCESS.2019.2953818
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8902006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8902006</ieee_id><doaj_id>oai_doaj_org_article_f933a5dd4ea5435f854a21e08b9cd94e</doaj_id><sourcerecordid>2455599028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-52e9411ba32cf90af57bf79a98cbbe9cc015240b6e15b2c94819e5ec8255dc1b3</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBIoLFfwKUS54581FtyhDJg0hATX9eQJi50Ks1IWk3792QUIXywnyy_Z1svSc4omVBK5MVlUcyfniaMUDlhErig4iA5YXQqMw58evgPHyfjENYkhogtmJ0kb6ud15-11U36sOlqE-tN47bpPXYfzmZXOqBNl_X7R7fFfU7vXetM32if8uv0VYcBr1zddmnRuN6mj2hcGzrfm6527WlyVOkm4Pi3jpKXm_lzcZctH24XxeUyMxxElwFDmVNaas5MJYmuYFZWM6mlMGWJ0hhCgeWknCKFkhmZCyoR0AgGYA0t-ShZDLrW6bXa-PpT-51yulY_DefflfbxwQZVJTnXYG2OGnIOlYBcM4pElNJYmWPUOh-0Nt599Rg6tXa9b-P5iuUAICVhIk7xYcp4F4LH6m8rJWrvjBqcUXtn1K8zkXU2sGpE_GOIqEjIlH8DcjuKOg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455599028</pqid></control><display><type>article</type><title>Pyramidal Optical Flow Method-Based Lightweight Monocular 3D Vascular Point Cloud Reconstruction</title><source>IEEE Open Access Journals</source><creator>Liu, Chang ; Xu, Shipu ; Liu, Xiaojun ; Xie, Ning ; Zhang, Zhao ; Lin, Huangxing ; Hu, Yaqiong ; Ng, Eyk ; Chen, Dangzhao ; Zhao, Lei ; Lu, Yifan ; Dai, Xin</creator><creatorcontrib>Liu, Chang ; Xu, Shipu ; Liu, Xiaojun ; Xie, Ning ; Zhang, Zhao ; Lin, Huangxing ; Hu, Yaqiong ; Ng, Eyk ; Chen, Dangzhao ; Zhao, Lei ; Lu, Yifan ; Dai, Xin</creatorcontrib><description>We propose a method for reconstructing a 3D point cloud of the organ model based on optical flow and take the 3D cardiovascular model reconstruction as an example. This optical-flow distribution based 3D point cloud reconstruction method is divided into four steps. Firstly, we employ the Coey filter to remove the noise points and improve the resolution of the raw images. Secondly, we implement the Shi-Tomasi method to extract the feature points from these filtered images. Thirdly, we remove the redundancy in the feature point set by the optical flow distributions. Finally, we converted the obtained feature points from 2D to 3D through the optical flow distribution and then reconstructed a 3D point cloud of the medical organ. With the help of our 3D representation, doctors and patients can view the 3D medical models on the Web. The final result on the Web shows the proposed method is feasible and superior.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2953818</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D medical digital representation ; 3D point cloud ; coronary angiography ; Feature extraction ; Flow distribution ; Image filters ; Image reconstruction ; lightweight ; Medical imaging ; Optical filters ; optical flow ; Optical flow (image analysis) ; Optical imaging ; Pedestrians ; Physicians ; Redundancy ; Solid modeling ; Three dimensional flow ; Three dimensional models ; Three-dimensional displays ; Two dimensional displays ; Web3D</subject><ispartof>IEEE access, 2019, Vol.7, p.167420-167428</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-52e9411ba32cf90af57bf79a98cbbe9cc015240b6e15b2c94819e5ec8255dc1b3</cites><orcidid>0000-0002-1213-9814 ; 0000-0002-3653-9871 ; 0000-0002-5701-1080 ; 0000-0002-7062-0374 ; 0000-0002-3623-9211 ; 0000-0001-8138-6125 ; 0000-0001-9811-8995 ; 0000-0001-7646-0503 ; 0000-0003-2674-9426 ; 0000-0002-1509-464X ; 0000-0001-6184-6200 ; 0000-0003-4721-0905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8902006$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Xu, Shipu</creatorcontrib><creatorcontrib>Liu, Xiaojun</creatorcontrib><creatorcontrib>Xie, Ning</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Lin, Huangxing</creatorcontrib><creatorcontrib>Hu, Yaqiong</creatorcontrib><creatorcontrib>Ng, Eyk</creatorcontrib><creatorcontrib>Chen, Dangzhao</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Lu, Yifan</creatorcontrib><creatorcontrib>Dai, Xin</creatorcontrib><title>Pyramidal Optical Flow Method-Based Lightweight Monocular 3D Vascular Point Cloud Reconstruction</title><title>IEEE access</title><addtitle>Access</addtitle><description>We propose a method for reconstructing a 3D point cloud of the organ model based on optical flow and take the 3D cardiovascular model reconstruction as an example. This optical-flow distribution based 3D point cloud reconstruction method is divided into four steps. Firstly, we employ the Coey filter to remove the noise points and improve the resolution of the raw images. Secondly, we implement the Shi-Tomasi method to extract the feature points from these filtered images. Thirdly, we remove the redundancy in the feature point set by the optical flow distributions. Finally, we converted the obtained feature points from 2D to 3D through the optical flow distribution and then reconstructed a 3D point cloud of the medical organ. With the help of our 3D representation, doctors and patients can view the 3D medical models on the Web. The final result on the Web shows the proposed method is feasible and superior.</description><subject>3D medical digital representation</subject><subject>3D point cloud</subject><subject>coronary angiography</subject><subject>Feature extraction</subject><subject>Flow distribution</subject><subject>Image filters</subject><subject>Image reconstruction</subject><subject>lightweight</subject><subject>Medical imaging</subject><subject>Optical filters</subject><subject>optical flow</subject><subject>Optical flow (image analysis)</subject><subject>Optical imaging</subject><subject>Pedestrians</subject><subject>Physicians</subject><subject>Redundancy</subject><subject>Solid modeling</subject><subject>Three dimensional flow</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><subject>Web3D</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMrRBIoLFfwKUS54581FtyhDJg0hATX9eQJi50Ks1IWk3792QUIXywnyy_Z1svSc4omVBK5MVlUcyfniaMUDlhErig4iA5YXQqMw58evgPHyfjENYkhogtmJ0kb6ud15-11U36sOlqE-tN47bpPXYfzmZXOqBNl_X7R7fFfU7vXetM32if8uv0VYcBr1zddmnRuN6mj2hcGzrfm6527WlyVOkm4Pi3jpKXm_lzcZctH24XxeUyMxxElwFDmVNaas5MJYmuYFZWM6mlMGWJ0hhCgeWknCKFkhmZCyoR0AgGYA0t-ShZDLrW6bXa-PpT-51yulY_DefflfbxwQZVJTnXYG2OGnIOlYBcM4pElNJYmWPUOh-0Nt599Rg6tXa9b-P5iuUAICVhIk7xYcp4F4LH6m8rJWrvjBqcUXtn1K8zkXU2sGpE_GOIqEjIlH8DcjuKOg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Liu, Chang</creator><creator>Xu, Shipu</creator><creator>Liu, Xiaojun</creator><creator>Xie, Ning</creator><creator>Zhang, Zhao</creator><creator>Lin, Huangxing</creator><creator>Hu, Yaqiong</creator><creator>Ng, Eyk</creator><creator>Chen, Dangzhao</creator><creator>Zhao, Lei</creator><creator>Lu, Yifan</creator><creator>Dai, Xin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1213-9814</orcidid><orcidid>https://orcid.org/0000-0002-3653-9871</orcidid><orcidid>https://orcid.org/0000-0002-5701-1080</orcidid><orcidid>https://orcid.org/0000-0002-7062-0374</orcidid><orcidid>https://orcid.org/0000-0002-3623-9211</orcidid><orcidid>https://orcid.org/0000-0001-8138-6125</orcidid><orcidid>https://orcid.org/0000-0001-9811-8995</orcidid><orcidid>https://orcid.org/0000-0001-7646-0503</orcidid><orcidid>https://orcid.org/0000-0003-2674-9426</orcidid><orcidid>https://orcid.org/0000-0002-1509-464X</orcidid><orcidid>https://orcid.org/0000-0001-6184-6200</orcidid><orcidid>https://orcid.org/0000-0003-4721-0905</orcidid></search><sort><creationdate>2019</creationdate><title>Pyramidal Optical Flow Method-Based Lightweight Monocular 3D Vascular Point Cloud Reconstruction</title><author>Liu, Chang ; Xu, Shipu ; Liu, Xiaojun ; Xie, Ning ; Zhang, Zhao ; Lin, Huangxing ; Hu, Yaqiong ; Ng, Eyk ; Chen, Dangzhao ; Zhao, Lei ; Lu, Yifan ; Dai, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-52e9411ba32cf90af57bf79a98cbbe9cc015240b6e15b2c94819e5ec8255dc1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D medical digital representation</topic><topic>3D point cloud</topic><topic>coronary angiography</topic><topic>Feature extraction</topic><topic>Flow distribution</topic><topic>Image filters</topic><topic>Image reconstruction</topic><topic>lightweight</topic><topic>Medical imaging</topic><topic>Optical filters</topic><topic>optical flow</topic><topic>Optical flow (image analysis)</topic><topic>Optical imaging</topic><topic>Pedestrians</topic><topic>Physicians</topic><topic>Redundancy</topic><topic>Solid modeling</topic><topic>Three dimensional flow</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><topic>Web3D</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Xu, Shipu</creatorcontrib><creatorcontrib>Liu, Xiaojun</creatorcontrib><creatorcontrib>Xie, Ning</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Lin, Huangxing</creatorcontrib><creatorcontrib>Hu, Yaqiong</creatorcontrib><creatorcontrib>Ng, Eyk</creatorcontrib><creatorcontrib>Chen, Dangzhao</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Lu, Yifan</creatorcontrib><creatorcontrib>Dai, Xin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chang</au><au>Xu, Shipu</au><au>Liu, Xiaojun</au><au>Xie, Ning</au><au>Zhang, Zhao</au><au>Lin, Huangxing</au><au>Hu, Yaqiong</au><au>Ng, Eyk</au><au>Chen, Dangzhao</au><au>Zhao, Lei</au><au>Lu, Yifan</au><au>Dai, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyramidal Optical Flow Method-Based Lightweight Monocular 3D Vascular Point Cloud Reconstruction</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>167420</spage><epage>167428</epage><pages>167420-167428</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We propose a method for reconstructing a 3D point cloud of the organ model based on optical flow and take the 3D cardiovascular model reconstruction as an example. This optical-flow distribution based 3D point cloud reconstruction method is divided into four steps. Firstly, we employ the Coey filter to remove the noise points and improve the resolution of the raw images. Secondly, we implement the Shi-Tomasi method to extract the feature points from these filtered images. Thirdly, we remove the redundancy in the feature point set by the optical flow distributions. Finally, we converted the obtained feature points from 2D to 3D through the optical flow distribution and then reconstructed a 3D point cloud of the medical organ. With the help of our 3D representation, doctors and patients can view the 3D medical models on the Web. The final result on the Web shows the proposed method is feasible and superior.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2953818</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1213-9814</orcidid><orcidid>https://orcid.org/0000-0002-3653-9871</orcidid><orcidid>https://orcid.org/0000-0002-5701-1080</orcidid><orcidid>https://orcid.org/0000-0002-7062-0374</orcidid><orcidid>https://orcid.org/0000-0002-3623-9211</orcidid><orcidid>https://orcid.org/0000-0001-8138-6125</orcidid><orcidid>https://orcid.org/0000-0001-9811-8995</orcidid><orcidid>https://orcid.org/0000-0001-7646-0503</orcidid><orcidid>https://orcid.org/0000-0003-2674-9426</orcidid><orcidid>https://orcid.org/0000-0002-1509-464X</orcidid><orcidid>https://orcid.org/0000-0001-6184-6200</orcidid><orcidid>https://orcid.org/0000-0003-4721-0905</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.167420-167428
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8902006
source IEEE Open Access Journals
subjects 3D medical digital representation
3D point cloud
coronary angiography
Feature extraction
Flow distribution
Image filters
Image reconstruction
lightweight
Medical imaging
Optical filters
optical flow
Optical flow (image analysis)
Optical imaging
Pedestrians
Physicians
Redundancy
Solid modeling
Three dimensional flow
Three dimensional models
Three-dimensional displays
Two dimensional displays
Web3D
title Pyramidal Optical Flow Method-Based Lightweight Monocular 3D Vascular Point Cloud Reconstruction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyramidal%20Optical%20Flow%20Method-Based%20Lightweight%20Monocular%203D%20Vascular%20Point%20Cloud%20Reconstruction&rft.jtitle=IEEE%20access&rft.au=Liu,%20Chang&rft.date=2019&rft.volume=7&rft.spage=167420&rft.epage=167428&rft.pages=167420-167428&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2953818&rft_dat=%3Cproquest_ieee_%3E2455599028%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-52e9411ba32cf90af57bf79a98cbbe9cc015240b6e15b2c94819e5ec8255dc1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455599028&rft_id=info:pmid/&rft_ieee_id=8902006&rfr_iscdi=true