Loading…
Pyramidal Optical Flow Method-Based Lightweight Monocular 3D Vascular Point Cloud Reconstruction
We propose a method for reconstructing a 3D point cloud of the organ model based on optical flow and take the 3D cardiovascular model reconstruction as an example. This optical-flow distribution based 3D point cloud reconstruction method is divided into four steps. Firstly, we employ the Coey filter...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.167420-167428 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-52e9411ba32cf90af57bf79a98cbbe9cc015240b6e15b2c94819e5ec8255dc1b3 |
container_end_page | 167428 |
container_issue | |
container_start_page | 167420 |
container_title | IEEE access |
container_volume | 7 |
creator | Liu, Chang Xu, Shipu Liu, Xiaojun Xie, Ning Zhang, Zhao Lin, Huangxing Hu, Yaqiong Ng, Eyk Chen, Dangzhao Zhao, Lei Lu, Yifan Dai, Xin |
description | We propose a method for reconstructing a 3D point cloud of the organ model based on optical flow and take the 3D cardiovascular model reconstruction as an example. This optical-flow distribution based 3D point cloud reconstruction method is divided into four steps. Firstly, we employ the Coey filter to remove the noise points and improve the resolution of the raw images. Secondly, we implement the Shi-Tomasi method to extract the feature points from these filtered images. Thirdly, we remove the redundancy in the feature point set by the optical flow distributions. Finally, we converted the obtained feature points from 2D to 3D through the optical flow distribution and then reconstructed a 3D point cloud of the medical organ. With the help of our 3D representation, doctors and patients can view the 3D medical models on the Web. The final result on the Web shows the proposed method is feasible and superior. |
doi_str_mv | 10.1109/ACCESS.2019.2953818 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8902006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8902006</ieee_id><doaj_id>oai_doaj_org_article_f933a5dd4ea5435f854a21e08b9cd94e</doaj_id><sourcerecordid>2455599028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-52e9411ba32cf90af57bf79a98cbbe9cc015240b6e15b2c94819e5ec8255dc1b3</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBIoLFfwKUS54581FtyhDJg0hATX9eQJi50Ks1IWk3792QUIXywnyy_Z1svSc4omVBK5MVlUcyfniaMUDlhErig4iA5YXQqMw58evgPHyfjENYkhogtmJ0kb6ud15-11U36sOlqE-tN47bpPXYfzmZXOqBNl_X7R7fFfU7vXetM32if8uv0VYcBr1zddmnRuN6mj2hcGzrfm6527WlyVOkm4Pi3jpKXm_lzcZctH24XxeUyMxxElwFDmVNaas5MJYmuYFZWM6mlMGWJ0hhCgeWknCKFkhmZCyoR0AgGYA0t-ShZDLrW6bXa-PpT-51yulY_DefflfbxwQZVJTnXYG2OGnIOlYBcM4pElNJYmWPUOh-0Nt599Rg6tXa9b-P5iuUAICVhIk7xYcp4F4LH6m8rJWrvjBqcUXtn1K8zkXU2sGpE_GOIqEjIlH8DcjuKOg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455599028</pqid></control><display><type>article</type><title>Pyramidal Optical Flow Method-Based Lightweight Monocular 3D Vascular Point Cloud Reconstruction</title><source>IEEE Open Access Journals</source><creator>Liu, Chang ; Xu, Shipu ; Liu, Xiaojun ; Xie, Ning ; Zhang, Zhao ; Lin, Huangxing ; Hu, Yaqiong ; Ng, Eyk ; Chen, Dangzhao ; Zhao, Lei ; Lu, Yifan ; Dai, Xin</creator><creatorcontrib>Liu, Chang ; Xu, Shipu ; Liu, Xiaojun ; Xie, Ning ; Zhang, Zhao ; Lin, Huangxing ; Hu, Yaqiong ; Ng, Eyk ; Chen, Dangzhao ; Zhao, Lei ; Lu, Yifan ; Dai, Xin</creatorcontrib><description>We propose a method for reconstructing a 3D point cloud of the organ model based on optical flow and take the 3D cardiovascular model reconstruction as an example. This optical-flow distribution based 3D point cloud reconstruction method is divided into four steps. Firstly, we employ the Coey filter to remove the noise points and improve the resolution of the raw images. Secondly, we implement the Shi-Tomasi method to extract the feature points from these filtered images. Thirdly, we remove the redundancy in the feature point set by the optical flow distributions. Finally, we converted the obtained feature points from 2D to 3D through the optical flow distribution and then reconstructed a 3D point cloud of the medical organ. With the help of our 3D representation, doctors and patients can view the 3D medical models on the Web. The final result on the Web shows the proposed method is feasible and superior.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2953818</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D medical digital representation ; 3D point cloud ; coronary angiography ; Feature extraction ; Flow distribution ; Image filters ; Image reconstruction ; lightweight ; Medical imaging ; Optical filters ; optical flow ; Optical flow (image analysis) ; Optical imaging ; Pedestrians ; Physicians ; Redundancy ; Solid modeling ; Three dimensional flow ; Three dimensional models ; Three-dimensional displays ; Two dimensional displays ; Web3D</subject><ispartof>IEEE access, 2019, Vol.7, p.167420-167428</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-52e9411ba32cf90af57bf79a98cbbe9cc015240b6e15b2c94819e5ec8255dc1b3</cites><orcidid>0000-0002-1213-9814 ; 0000-0002-3653-9871 ; 0000-0002-5701-1080 ; 0000-0002-7062-0374 ; 0000-0002-3623-9211 ; 0000-0001-8138-6125 ; 0000-0001-9811-8995 ; 0000-0001-7646-0503 ; 0000-0003-2674-9426 ; 0000-0002-1509-464X ; 0000-0001-6184-6200 ; 0000-0003-4721-0905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8902006$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Xu, Shipu</creatorcontrib><creatorcontrib>Liu, Xiaojun</creatorcontrib><creatorcontrib>Xie, Ning</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Lin, Huangxing</creatorcontrib><creatorcontrib>Hu, Yaqiong</creatorcontrib><creatorcontrib>Ng, Eyk</creatorcontrib><creatorcontrib>Chen, Dangzhao</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Lu, Yifan</creatorcontrib><creatorcontrib>Dai, Xin</creatorcontrib><title>Pyramidal Optical Flow Method-Based Lightweight Monocular 3D Vascular Point Cloud Reconstruction</title><title>IEEE access</title><addtitle>Access</addtitle><description>We propose a method for reconstructing a 3D point cloud of the organ model based on optical flow and take the 3D cardiovascular model reconstruction as an example. This optical-flow distribution based 3D point cloud reconstruction method is divided into four steps. Firstly, we employ the Coey filter to remove the noise points and improve the resolution of the raw images. Secondly, we implement the Shi-Tomasi method to extract the feature points from these filtered images. Thirdly, we remove the redundancy in the feature point set by the optical flow distributions. Finally, we converted the obtained feature points from 2D to 3D through the optical flow distribution and then reconstructed a 3D point cloud of the medical organ. With the help of our 3D representation, doctors and patients can view the 3D medical models on the Web. The final result on the Web shows the proposed method is feasible and superior.</description><subject>3D medical digital representation</subject><subject>3D point cloud</subject><subject>coronary angiography</subject><subject>Feature extraction</subject><subject>Flow distribution</subject><subject>Image filters</subject><subject>Image reconstruction</subject><subject>lightweight</subject><subject>Medical imaging</subject><subject>Optical filters</subject><subject>optical flow</subject><subject>Optical flow (image analysis)</subject><subject>Optical imaging</subject><subject>Pedestrians</subject><subject>Physicians</subject><subject>Redundancy</subject><subject>Solid modeling</subject><subject>Three dimensional flow</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><subject>Web3D</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMrRBIoLFfwKUS54581FtyhDJg0hATX9eQJi50Ks1IWk3792QUIXywnyy_Z1svSc4omVBK5MVlUcyfniaMUDlhErig4iA5YXQqMw58evgPHyfjENYkhogtmJ0kb6ud15-11U36sOlqE-tN47bpPXYfzmZXOqBNl_X7R7fFfU7vXetM32if8uv0VYcBr1zddmnRuN6mj2hcGzrfm6527WlyVOkm4Pi3jpKXm_lzcZctH24XxeUyMxxElwFDmVNaas5MJYmuYFZWM6mlMGWJ0hhCgeWknCKFkhmZCyoR0AgGYA0t-ShZDLrW6bXa-PpT-51yulY_DefflfbxwQZVJTnXYG2OGnIOlYBcM4pElNJYmWPUOh-0Nt599Rg6tXa9b-P5iuUAICVhIk7xYcp4F4LH6m8rJWrvjBqcUXtn1K8zkXU2sGpE_GOIqEjIlH8DcjuKOg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Liu, Chang</creator><creator>Xu, Shipu</creator><creator>Liu, Xiaojun</creator><creator>Xie, Ning</creator><creator>Zhang, Zhao</creator><creator>Lin, Huangxing</creator><creator>Hu, Yaqiong</creator><creator>Ng, Eyk</creator><creator>Chen, Dangzhao</creator><creator>Zhao, Lei</creator><creator>Lu, Yifan</creator><creator>Dai, Xin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1213-9814</orcidid><orcidid>https://orcid.org/0000-0002-3653-9871</orcidid><orcidid>https://orcid.org/0000-0002-5701-1080</orcidid><orcidid>https://orcid.org/0000-0002-7062-0374</orcidid><orcidid>https://orcid.org/0000-0002-3623-9211</orcidid><orcidid>https://orcid.org/0000-0001-8138-6125</orcidid><orcidid>https://orcid.org/0000-0001-9811-8995</orcidid><orcidid>https://orcid.org/0000-0001-7646-0503</orcidid><orcidid>https://orcid.org/0000-0003-2674-9426</orcidid><orcidid>https://orcid.org/0000-0002-1509-464X</orcidid><orcidid>https://orcid.org/0000-0001-6184-6200</orcidid><orcidid>https://orcid.org/0000-0003-4721-0905</orcidid></search><sort><creationdate>2019</creationdate><title>Pyramidal Optical Flow Method-Based Lightweight Monocular 3D Vascular Point Cloud Reconstruction</title><author>Liu, Chang ; Xu, Shipu ; Liu, Xiaojun ; Xie, Ning ; Zhang, Zhao ; Lin, Huangxing ; Hu, Yaqiong ; Ng, Eyk ; Chen, Dangzhao ; Zhao, Lei ; Lu, Yifan ; Dai, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-52e9411ba32cf90af57bf79a98cbbe9cc015240b6e15b2c94819e5ec8255dc1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D medical digital representation</topic><topic>3D point cloud</topic><topic>coronary angiography</topic><topic>Feature extraction</topic><topic>Flow distribution</topic><topic>Image filters</topic><topic>Image reconstruction</topic><topic>lightweight</topic><topic>Medical imaging</topic><topic>Optical filters</topic><topic>optical flow</topic><topic>Optical flow (image analysis)</topic><topic>Optical imaging</topic><topic>Pedestrians</topic><topic>Physicians</topic><topic>Redundancy</topic><topic>Solid modeling</topic><topic>Three dimensional flow</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><topic>Web3D</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Xu, Shipu</creatorcontrib><creatorcontrib>Liu, Xiaojun</creatorcontrib><creatorcontrib>Xie, Ning</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Lin, Huangxing</creatorcontrib><creatorcontrib>Hu, Yaqiong</creatorcontrib><creatorcontrib>Ng, Eyk</creatorcontrib><creatorcontrib>Chen, Dangzhao</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Lu, Yifan</creatorcontrib><creatorcontrib>Dai, Xin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chang</au><au>Xu, Shipu</au><au>Liu, Xiaojun</au><au>Xie, Ning</au><au>Zhang, Zhao</au><au>Lin, Huangxing</au><au>Hu, Yaqiong</au><au>Ng, Eyk</au><au>Chen, Dangzhao</au><au>Zhao, Lei</au><au>Lu, Yifan</au><au>Dai, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyramidal Optical Flow Method-Based Lightweight Monocular 3D Vascular Point Cloud Reconstruction</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>167420</spage><epage>167428</epage><pages>167420-167428</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We propose a method for reconstructing a 3D point cloud of the organ model based on optical flow and take the 3D cardiovascular model reconstruction as an example. This optical-flow distribution based 3D point cloud reconstruction method is divided into four steps. Firstly, we employ the Coey filter to remove the noise points and improve the resolution of the raw images. Secondly, we implement the Shi-Tomasi method to extract the feature points from these filtered images. Thirdly, we remove the redundancy in the feature point set by the optical flow distributions. Finally, we converted the obtained feature points from 2D to 3D through the optical flow distribution and then reconstructed a 3D point cloud of the medical organ. With the help of our 3D representation, doctors and patients can view the 3D medical models on the Web. The final result on the Web shows the proposed method is feasible and superior.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2953818</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1213-9814</orcidid><orcidid>https://orcid.org/0000-0002-3653-9871</orcidid><orcidid>https://orcid.org/0000-0002-5701-1080</orcidid><orcidid>https://orcid.org/0000-0002-7062-0374</orcidid><orcidid>https://orcid.org/0000-0002-3623-9211</orcidid><orcidid>https://orcid.org/0000-0001-8138-6125</orcidid><orcidid>https://orcid.org/0000-0001-9811-8995</orcidid><orcidid>https://orcid.org/0000-0001-7646-0503</orcidid><orcidid>https://orcid.org/0000-0003-2674-9426</orcidid><orcidid>https://orcid.org/0000-0002-1509-464X</orcidid><orcidid>https://orcid.org/0000-0001-6184-6200</orcidid><orcidid>https://orcid.org/0000-0003-4721-0905</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.167420-167428 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8902006 |
source | IEEE Open Access Journals |
subjects | 3D medical digital representation 3D point cloud coronary angiography Feature extraction Flow distribution Image filters Image reconstruction lightweight Medical imaging Optical filters optical flow Optical flow (image analysis) Optical imaging Pedestrians Physicians Redundancy Solid modeling Three dimensional flow Three dimensional models Three-dimensional displays Two dimensional displays Web3D |
title | Pyramidal Optical Flow Method-Based Lightweight Monocular 3D Vascular Point Cloud Reconstruction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyramidal%20Optical%20Flow%20Method-Based%20Lightweight%20Monocular%203D%20Vascular%20Point%20Cloud%20Reconstruction&rft.jtitle=IEEE%20access&rft.au=Liu,%20Chang&rft.date=2019&rft.volume=7&rft.spage=167420&rft.epage=167428&rft.pages=167420-167428&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2953818&rft_dat=%3Cproquest_ieee_%3E2455599028%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-52e9411ba32cf90af57bf79a98cbbe9cc015240b6e15b2c94819e5ec8255dc1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455599028&rft_id=info:pmid/&rft_ieee_id=8902006&rfr_iscdi=true |