Loading…
Analysis on Mangoes Weight Estimation Problem using Neural Network
In the food industry, most fruit species are D bounding box of the mangoes and the Monte Carlo evaluated based on many qualifications, among which weight is Integration [5] to calculate the approximation of a solid one. Various methods and approaches to weight estimation object whose surface area is...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 562 |
container_issue | |
container_start_page | 559 |
container_title | |
container_volume | |
creator | Dang, Nhan T. Vo, Minh-Thanh Nguyen, Tuan-Duc Dao, Son V.T. |
description | In the food industry, most fruit species are D bounding box of the mangoes and the Monte Carlo evaluated based on many qualifications, among which weight is Integration [5] to calculate the approximation of a solid one. Various methods and approaches to weight estimation object whose surface area is known [6]. have been done using both 2-D and 3-D image analysis Fig. 2. The principal axes of bounding box [2] techniques. In Vietnam, the application of these approaches will bring tremendous benefits to the agriculture industry by automating the sorting process for exporting fruit to foreign countries. This paper will present an analysis of the performance contributions of the different geometric parameters to the weight estimation process, with the target fruit being Hoa Loc mango. |
doi_str_mv | 10.1109/ISCIT.2019.8905118 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8905118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8905118</ieee_id><sourcerecordid>8905118</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-9564d5f180a4010113a9a6e412b2b86dc3f1e32ed4cfa17c96ed738be3cafb6b3</originalsourceid><addsrcrecordid>eNotj81Kw0AURkdBsNa-gG7mBRLvnUkmM8saag3UH7DisswkN3E0TSSTIn17A3Z1Fgc-zsfYDUKMCOaueMuLbSwATawNpIj6jF1hJjSmACY5ZzOhEhkpzNJLtgjhCwAkamNQzNj9srPtMfjA-44_2a7pKfAP8s3nyFdh9Hs7-sm8Dr1rac8PwXcNf6bDYNsJ428_fF-zi9q2gRYnztn7w2qbP0abl3WRLzeRn5LGyKQqqdIaNdgEEBClNVZRgsIJp1VVyhpJCqqSsraYlUZRlUntSJa2dsrJObv93_VEtPsZprbhuDtdln_LOUr1</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Analysis on Mangoes Weight Estimation Problem using Neural Network</title><source>IEEE Xplore All Conference Series</source><creator>Dang, Nhan T. ; Vo, Minh-Thanh ; Nguyen, Tuan-Duc ; Dao, Son V.T.</creator><creatorcontrib>Dang, Nhan T. ; Vo, Minh-Thanh ; Nguyen, Tuan-Duc ; Dao, Son V.T.</creatorcontrib><description>In the food industry, most fruit species are D bounding box of the mangoes and the Monte Carlo evaluated based on many qualifications, among which weight is Integration [5] to calculate the approximation of a solid one. Various methods and approaches to weight estimation object whose surface area is known [6]. have been done using both 2-D and 3-D image analysis Fig. 2. The principal axes of bounding box [2] techniques. In Vietnam, the application of these approaches will bring tremendous benefits to the agriculture industry by automating the sorting process for exporting fruit to foreign countries. This paper will present an analysis of the performance contributions of the different geometric parameters to the weight estimation process, with the target fruit being Hoa Loc mango.</description><identifier>EISSN: 2643-6175</identifier><identifier>EISBN: 1728150094</identifier><identifier>EISBN: 9781728150093</identifier><identifier>DOI: 10.1109/ISCIT.2019.8905118</identifier><language>eng</language><publisher>IEEE</publisher><subject>Connection Weights ; Inputs Contribution ; Mangoes Weight Estimation</subject><ispartof>2019 19th International Symposium on Communications and Information Technologies (ISCIT), 2019, p.559-562</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8905118$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8905118$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dang, Nhan T.</creatorcontrib><creatorcontrib>Vo, Minh-Thanh</creatorcontrib><creatorcontrib>Nguyen, Tuan-Duc</creatorcontrib><creatorcontrib>Dao, Son V.T.</creatorcontrib><title>Analysis on Mangoes Weight Estimation Problem using Neural Network</title><title>2019 19th International Symposium on Communications and Information Technologies (ISCIT)</title><addtitle>ISCIT</addtitle><description>In the food industry, most fruit species are D bounding box of the mangoes and the Monte Carlo evaluated based on many qualifications, among which weight is Integration [5] to calculate the approximation of a solid one. Various methods and approaches to weight estimation object whose surface area is known [6]. have been done using both 2-D and 3-D image analysis Fig. 2. The principal axes of bounding box [2] techniques. In Vietnam, the application of these approaches will bring tremendous benefits to the agriculture industry by automating the sorting process for exporting fruit to foreign countries. This paper will present an analysis of the performance contributions of the different geometric parameters to the weight estimation process, with the target fruit being Hoa Loc mango.</description><subject>Connection Weights</subject><subject>Inputs Contribution</subject><subject>Mangoes Weight Estimation</subject><issn>2643-6175</issn><isbn>1728150094</isbn><isbn>9781728150093</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AURkdBsNa-gG7mBRLvnUkmM8saag3UH7DisswkN3E0TSSTIn17A3Z1Fgc-zsfYDUKMCOaueMuLbSwATawNpIj6jF1hJjSmACY5ZzOhEhkpzNJLtgjhCwAkamNQzNj9srPtMfjA-44_2a7pKfAP8s3nyFdh9Hs7-sm8Dr1rac8PwXcNf6bDYNsJ428_fF-zi9q2gRYnztn7w2qbP0abl3WRLzeRn5LGyKQqqdIaNdgEEBClNVZRgsIJp1VVyhpJCqqSsraYlUZRlUntSJa2dsrJObv93_VEtPsZprbhuDtdln_LOUr1</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Dang, Nhan T.</creator><creator>Vo, Minh-Thanh</creator><creator>Nguyen, Tuan-Duc</creator><creator>Dao, Son V.T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201909</creationdate><title>Analysis on Mangoes Weight Estimation Problem using Neural Network</title><author>Dang, Nhan T. ; Vo, Minh-Thanh ; Nguyen, Tuan-Duc ; Dao, Son V.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-9564d5f180a4010113a9a6e412b2b86dc3f1e32ed4cfa17c96ed738be3cafb6b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Connection Weights</topic><topic>Inputs Contribution</topic><topic>Mangoes Weight Estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Dang, Nhan T.</creatorcontrib><creatorcontrib>Vo, Minh-Thanh</creatorcontrib><creatorcontrib>Nguyen, Tuan-Duc</creatorcontrib><creatorcontrib>Dao, Son V.T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dang, Nhan T.</au><au>Vo, Minh-Thanh</au><au>Nguyen, Tuan-Duc</au><au>Dao, Son V.T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analysis on Mangoes Weight Estimation Problem using Neural Network</atitle><btitle>2019 19th International Symposium on Communications and Information Technologies (ISCIT)</btitle><stitle>ISCIT</stitle><date>2019-09</date><risdate>2019</risdate><spage>559</spage><epage>562</epage><pages>559-562</pages><eissn>2643-6175</eissn><eisbn>1728150094</eisbn><eisbn>9781728150093</eisbn><abstract>In the food industry, most fruit species are D bounding box of the mangoes and the Monte Carlo evaluated based on many qualifications, among which weight is Integration [5] to calculate the approximation of a solid one. Various methods and approaches to weight estimation object whose surface area is known [6]. have been done using both 2-D and 3-D image analysis Fig. 2. The principal axes of bounding box [2] techniques. In Vietnam, the application of these approaches will bring tremendous benefits to the agriculture industry by automating the sorting process for exporting fruit to foreign countries. This paper will present an analysis of the performance contributions of the different geometric parameters to the weight estimation process, with the target fruit being Hoa Loc mango.</abstract><pub>IEEE</pub><doi>10.1109/ISCIT.2019.8905118</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2643-6175 |
ispartof | 2019 19th International Symposium on Communications and Information Technologies (ISCIT), 2019, p.559-562 |
issn | 2643-6175 |
language | eng |
recordid | cdi_ieee_primary_8905118 |
source | IEEE Xplore All Conference Series |
subjects | Connection Weights Inputs Contribution Mangoes Weight Estimation |
title | Analysis on Mangoes Weight Estimation Problem using Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A33%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analysis%20on%20Mangoes%20Weight%20Estimation%20Problem%20using%20Neural%20Network&rft.btitle=2019%2019th%20International%20Symposium%20on%20Communications%20and%20Information%20Technologies%20(ISCIT)&rft.au=Dang,%20Nhan%20T.&rft.date=2019-09&rft.spage=559&rft.epage=562&rft.pages=559-562&rft.eissn=2643-6175&rft_id=info:doi/10.1109/ISCIT.2019.8905118&rft.eisbn=1728150094&rft.eisbn_list=9781728150093&rft_dat=%3Cieee_CHZPO%3E8905118%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-9564d5f180a4010113a9a6e412b2b86dc3f1e32ed4cfa17c96ed738be3cafb6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8905118&rfr_iscdi=true |