Loading…

Analysis on Mangoes Weight Estimation Problem using Neural Network

In the food industry, most fruit species are D bounding box of the mangoes and the Monte Carlo evaluated based on many qualifications, among which weight is Integration [5] to calculate the approximation of a solid one. Various methods and approaches to weight estimation object whose surface area is...

Full description

Saved in:
Bibliographic Details
Main Authors: Dang, Nhan T., Vo, Minh-Thanh, Nguyen, Tuan-Duc, Dao, Son V.T.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 562
container_issue
container_start_page 559
container_title
container_volume
creator Dang, Nhan T.
Vo, Minh-Thanh
Nguyen, Tuan-Duc
Dao, Son V.T.
description In the food industry, most fruit species are D bounding box of the mangoes and the Monte Carlo evaluated based on many qualifications, among which weight is Integration [5] to calculate the approximation of a solid one. Various methods and approaches to weight estimation object whose surface area is known [6]. have been done using both 2-D and 3-D image analysis Fig. 2. The principal axes of bounding box [2] techniques. In Vietnam, the application of these approaches will bring tremendous benefits to the agriculture industry by automating the sorting process for exporting fruit to foreign countries. This paper will present an analysis of the performance contributions of the different geometric parameters to the weight estimation process, with the target fruit being Hoa Loc mango.
doi_str_mv 10.1109/ISCIT.2019.8905118
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8905118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8905118</ieee_id><sourcerecordid>8905118</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-9564d5f180a4010113a9a6e412b2b86dc3f1e32ed4cfa17c96ed738be3cafb6b3</originalsourceid><addsrcrecordid>eNotj81Kw0AURkdBsNa-gG7mBRLvnUkmM8saag3UH7DisswkN3E0TSSTIn17A3Z1Fgc-zsfYDUKMCOaueMuLbSwATawNpIj6jF1hJjSmACY5ZzOhEhkpzNJLtgjhCwAkamNQzNj9srPtMfjA-44_2a7pKfAP8s3nyFdh9Hs7-sm8Dr1rac8PwXcNf6bDYNsJ428_fF-zi9q2gRYnztn7w2qbP0abl3WRLzeRn5LGyKQqqdIaNdgEEBClNVZRgsIJp1VVyhpJCqqSsraYlUZRlUntSJa2dsrJObv93_VEtPsZprbhuDtdln_LOUr1</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Analysis on Mangoes Weight Estimation Problem using Neural Network</title><source>IEEE Xplore All Conference Series</source><creator>Dang, Nhan T. ; Vo, Minh-Thanh ; Nguyen, Tuan-Duc ; Dao, Son V.T.</creator><creatorcontrib>Dang, Nhan T. ; Vo, Minh-Thanh ; Nguyen, Tuan-Duc ; Dao, Son V.T.</creatorcontrib><description>In the food industry, most fruit species are D bounding box of the mangoes and the Monte Carlo evaluated based on many qualifications, among which weight is Integration [5] to calculate the approximation of a solid one. Various methods and approaches to weight estimation object whose surface area is known [6]. have been done using both 2-D and 3-D image analysis Fig. 2. The principal axes of bounding box [2] techniques. In Vietnam, the application of these approaches will bring tremendous benefits to the agriculture industry by automating the sorting process for exporting fruit to foreign countries. This paper will present an analysis of the performance contributions of the different geometric parameters to the weight estimation process, with the target fruit being Hoa Loc mango.</description><identifier>EISSN: 2643-6175</identifier><identifier>EISBN: 1728150094</identifier><identifier>EISBN: 9781728150093</identifier><identifier>DOI: 10.1109/ISCIT.2019.8905118</identifier><language>eng</language><publisher>IEEE</publisher><subject>Connection Weights ; Inputs Contribution ; Mangoes Weight Estimation</subject><ispartof>2019 19th International Symposium on Communications and Information Technologies (ISCIT), 2019, p.559-562</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8905118$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8905118$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dang, Nhan T.</creatorcontrib><creatorcontrib>Vo, Minh-Thanh</creatorcontrib><creatorcontrib>Nguyen, Tuan-Duc</creatorcontrib><creatorcontrib>Dao, Son V.T.</creatorcontrib><title>Analysis on Mangoes Weight Estimation Problem using Neural Network</title><title>2019 19th International Symposium on Communications and Information Technologies (ISCIT)</title><addtitle>ISCIT</addtitle><description>In the food industry, most fruit species are D bounding box of the mangoes and the Monte Carlo evaluated based on many qualifications, among which weight is Integration [5] to calculate the approximation of a solid one. Various methods and approaches to weight estimation object whose surface area is known [6]. have been done using both 2-D and 3-D image analysis Fig. 2. The principal axes of bounding box [2] techniques. In Vietnam, the application of these approaches will bring tremendous benefits to the agriculture industry by automating the sorting process for exporting fruit to foreign countries. This paper will present an analysis of the performance contributions of the different geometric parameters to the weight estimation process, with the target fruit being Hoa Loc mango.</description><subject>Connection Weights</subject><subject>Inputs Contribution</subject><subject>Mangoes Weight Estimation</subject><issn>2643-6175</issn><isbn>1728150094</isbn><isbn>9781728150093</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AURkdBsNa-gG7mBRLvnUkmM8saag3UH7DisswkN3E0TSSTIn17A3Z1Fgc-zsfYDUKMCOaueMuLbSwATawNpIj6jF1hJjSmACY5ZzOhEhkpzNJLtgjhCwAkamNQzNj9srPtMfjA-44_2a7pKfAP8s3nyFdh9Hs7-sm8Dr1rac8PwXcNf6bDYNsJ428_fF-zi9q2gRYnztn7w2qbP0abl3WRLzeRn5LGyKQqqdIaNdgEEBClNVZRgsIJp1VVyhpJCqqSsraYlUZRlUntSJa2dsrJObv93_VEtPsZprbhuDtdln_LOUr1</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Dang, Nhan T.</creator><creator>Vo, Minh-Thanh</creator><creator>Nguyen, Tuan-Duc</creator><creator>Dao, Son V.T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201909</creationdate><title>Analysis on Mangoes Weight Estimation Problem using Neural Network</title><author>Dang, Nhan T. ; Vo, Minh-Thanh ; Nguyen, Tuan-Duc ; Dao, Son V.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-9564d5f180a4010113a9a6e412b2b86dc3f1e32ed4cfa17c96ed738be3cafb6b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Connection Weights</topic><topic>Inputs Contribution</topic><topic>Mangoes Weight Estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Dang, Nhan T.</creatorcontrib><creatorcontrib>Vo, Minh-Thanh</creatorcontrib><creatorcontrib>Nguyen, Tuan-Duc</creatorcontrib><creatorcontrib>Dao, Son V.T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dang, Nhan T.</au><au>Vo, Minh-Thanh</au><au>Nguyen, Tuan-Duc</au><au>Dao, Son V.T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analysis on Mangoes Weight Estimation Problem using Neural Network</atitle><btitle>2019 19th International Symposium on Communications and Information Technologies (ISCIT)</btitle><stitle>ISCIT</stitle><date>2019-09</date><risdate>2019</risdate><spage>559</spage><epage>562</epage><pages>559-562</pages><eissn>2643-6175</eissn><eisbn>1728150094</eisbn><eisbn>9781728150093</eisbn><abstract>In the food industry, most fruit species are D bounding box of the mangoes and the Monte Carlo evaluated based on many qualifications, among which weight is Integration [5] to calculate the approximation of a solid one. Various methods and approaches to weight estimation object whose surface area is known [6]. have been done using both 2-D and 3-D image analysis Fig. 2. The principal axes of bounding box [2] techniques. In Vietnam, the application of these approaches will bring tremendous benefits to the agriculture industry by automating the sorting process for exporting fruit to foreign countries. This paper will present an analysis of the performance contributions of the different geometric parameters to the weight estimation process, with the target fruit being Hoa Loc mango.</abstract><pub>IEEE</pub><doi>10.1109/ISCIT.2019.8905118</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2643-6175
ispartof 2019 19th International Symposium on Communications and Information Technologies (ISCIT), 2019, p.559-562
issn 2643-6175
language eng
recordid cdi_ieee_primary_8905118
source IEEE Xplore All Conference Series
subjects Connection Weights
Inputs Contribution
Mangoes Weight Estimation
title Analysis on Mangoes Weight Estimation Problem using Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A33%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analysis%20on%20Mangoes%20Weight%20Estimation%20Problem%20using%20Neural%20Network&rft.btitle=2019%2019th%20International%20Symposium%20on%20Communications%20and%20Information%20Technologies%20(ISCIT)&rft.au=Dang,%20Nhan%20T.&rft.date=2019-09&rft.spage=559&rft.epage=562&rft.pages=559-562&rft.eissn=2643-6175&rft_id=info:doi/10.1109/ISCIT.2019.8905118&rft.eisbn=1728150094&rft.eisbn_list=9781728150093&rft_dat=%3Cieee_CHZPO%3E8905118%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-9564d5f180a4010113a9a6e412b2b86dc3f1e32ed4cfa17c96ed738be3cafb6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8905118&rfr_iscdi=true