Loading…

Parkinson's Disease EMG Signal Prediction Using Neural Networks

This paper proposes a comparison between different neural network models, using multilayer perceptron (MLPs) and recurrent neural network (RNN) models, for predicting Parkinson's disease electromyography (EMG) signals, to anticipate resulting resting tremor patterns. The experimental results in...

Full description

Saved in:
Bibliographic Details
Main Authors: Zanini, Rafael Anicet, Colombini, Esther Luna, de Castro, Maria Claudia Ferrari
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c250t-b9d077efb5b3a31916465f792e50c05bf64a1368258e79cc05b256aef31d60f33
cites
container_end_page 2453
container_issue
container_start_page 2446
container_title
container_volume
creator Zanini, Rafael Anicet
Colombini, Esther Luna
de Castro, Maria Claudia Ferrari
description This paper proposes a comparison between different neural network models, using multilayer perceptron (MLPs) and recurrent neural network (RNN) models, for predicting Parkinson's disease electromyography (EMG) signals, to anticipate resulting resting tremor patterns. The experimental results indicate that the proposed models can adapt to different frequencies and amplitudes of tremor, and provide reasonable predictions for both EMG envelopes and EMG raw signals. Therefore, one could use these models as input for a control strategy for functional electrical stimulation (FES) devices used on tremor suppression, by dynamically predicting and improving FES control parameters based on tremor forecast.
doi_str_mv 10.1109/SMC.2019.8914553
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8914553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8914553</ieee_id><sourcerecordid>8914553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-b9d077efb5b3a31916465f792e50c05bf64a1368258e79cc05b256aef31d60f33</originalsourceid><addsrcrecordid>eNotj0FLwzAYhqMguE3vgpfcPLXmS_olzUmkzilsczB3Hmn7ZcTNVpLJ8N87cafn5Tm88DB2AyIHEPZ-OatyKcDmpYUCUZ2xIRhZHre2xTkbSDQmA414yYYpfQghRQHlgD0sXNyGLvXdXeJPIZFLxMezCV-GTed2fBGpDc0-9B1fpdBt-Jy-49HPaX_o4zZdsQvvdomuTxyx1fP4vXrJpm-T1-pxmjUSxT6rbSuMIV9jrZwCC7rQ6I2VhKIRWHtdOFC6lFiSsc2fkqgdeQWtFl6pEbv9_w1EtP6K4dPFn_UpVv0CDitHKw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parkinson's Disease EMG Signal Prediction Using Neural Networks</title><source>IEEE Xplore All Conference Series</source><creator>Zanini, Rafael Anicet ; Colombini, Esther Luna ; de Castro, Maria Claudia Ferrari</creator><creatorcontrib>Zanini, Rafael Anicet ; Colombini, Esther Luna ; de Castro, Maria Claudia Ferrari</creatorcontrib><description>This paper proposes a comparison between different neural network models, using multilayer perceptron (MLPs) and recurrent neural network (RNN) models, for predicting Parkinson's disease electromyography (EMG) signals, to anticipate resulting resting tremor patterns. The experimental results indicate that the proposed models can adapt to different frequencies and amplitudes of tremor, and provide reasonable predictions for both EMG envelopes and EMG raw signals. Therefore, one could use these models as input for a control strategy for functional electrical stimulation (FES) devices used on tremor suppression, by dynamically predicting and improving FES control parameters based on tremor forecast.</description><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 1728145694</identifier><identifier>EISBN: 9781728145693</identifier><identifier>DOI: 10.1109/SMC.2019.8914553</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Correlation ; Electromyography ; Iron ; Neurons ; Predictive models ; Recurrent neural networks</subject><ispartof>2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), 2019, p.2446-2453</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c250t-b9d077efb5b3a31916465f792e50c05bf64a1368258e79cc05b256aef31d60f33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8914553$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8914553$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zanini, Rafael Anicet</creatorcontrib><creatorcontrib>Colombini, Esther Luna</creatorcontrib><creatorcontrib>de Castro, Maria Claudia Ferrari</creatorcontrib><title>Parkinson's Disease EMG Signal Prediction Using Neural Networks</title><title>2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)</title><addtitle>SMC</addtitle><description>This paper proposes a comparison between different neural network models, using multilayer perceptron (MLPs) and recurrent neural network (RNN) models, for predicting Parkinson's disease electromyography (EMG) signals, to anticipate resulting resting tremor patterns. The experimental results indicate that the proposed models can adapt to different frequencies and amplitudes of tremor, and provide reasonable predictions for both EMG envelopes and EMG raw signals. Therefore, one could use these models as input for a control strategy for functional electrical stimulation (FES) devices used on tremor suppression, by dynamically predicting and improving FES control parameters based on tremor forecast.</description><subject>Adaptation models</subject><subject>Correlation</subject><subject>Electromyography</subject><subject>Iron</subject><subject>Neurons</subject><subject>Predictive models</subject><subject>Recurrent neural networks</subject><issn>2577-1655</issn><isbn>1728145694</isbn><isbn>9781728145693</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj0FLwzAYhqMguE3vgpfcPLXmS_olzUmkzilsczB3Hmn7ZcTNVpLJ8N87cafn5Tm88DB2AyIHEPZ-OatyKcDmpYUCUZ2xIRhZHre2xTkbSDQmA414yYYpfQghRQHlgD0sXNyGLvXdXeJPIZFLxMezCV-GTed2fBGpDc0-9B1fpdBt-Jy-49HPaX_o4zZdsQvvdomuTxyx1fP4vXrJpm-T1-pxmjUSxT6rbSuMIV9jrZwCC7rQ6I2VhKIRWHtdOFC6lFiSsc2fkqgdeQWtFl6pEbv9_w1EtP6K4dPFn_UpVv0CDitHKw</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Zanini, Rafael Anicet</creator><creator>Colombini, Esther Luna</creator><creator>de Castro, Maria Claudia Ferrari</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201910</creationdate><title>Parkinson's Disease EMG Signal Prediction Using Neural Networks</title><author>Zanini, Rafael Anicet ; Colombini, Esther Luna ; de Castro, Maria Claudia Ferrari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-b9d077efb5b3a31916465f792e50c05bf64a1368258e79cc05b256aef31d60f33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>Correlation</topic><topic>Electromyography</topic><topic>Iron</topic><topic>Neurons</topic><topic>Predictive models</topic><topic>Recurrent neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Zanini, Rafael Anicet</creatorcontrib><creatorcontrib>Colombini, Esther Luna</creatorcontrib><creatorcontrib>de Castro, Maria Claudia Ferrari</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zanini, Rafael Anicet</au><au>Colombini, Esther Luna</au><au>de Castro, Maria Claudia Ferrari</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parkinson's Disease EMG Signal Prediction Using Neural Networks</atitle><btitle>2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)</btitle><stitle>SMC</stitle><date>2019-10</date><risdate>2019</risdate><spage>2446</spage><epage>2453</epage><pages>2446-2453</pages><eissn>2577-1655</eissn><eisbn>1728145694</eisbn><eisbn>9781728145693</eisbn><abstract>This paper proposes a comparison between different neural network models, using multilayer perceptron (MLPs) and recurrent neural network (RNN) models, for predicting Parkinson's disease electromyography (EMG) signals, to anticipate resulting resting tremor patterns. The experimental results indicate that the proposed models can adapt to different frequencies and amplitudes of tremor, and provide reasonable predictions for both EMG envelopes and EMG raw signals. Therefore, one could use these models as input for a control strategy for functional electrical stimulation (FES) devices used on tremor suppression, by dynamically predicting and improving FES control parameters based on tremor forecast.</abstract><pub>IEEE</pub><doi>10.1109/SMC.2019.8914553</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2577-1655
ispartof 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), 2019, p.2446-2453
issn 2577-1655
language eng
recordid cdi_ieee_primary_8914553
source IEEE Xplore All Conference Series
subjects Adaptation models
Correlation
Electromyography
Iron
Neurons
Predictive models
Recurrent neural networks
title Parkinson's Disease EMG Signal Prediction Using Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parkinson's%20Disease%20EMG%20Signal%20Prediction%20Using%20Neural%20Networks&rft.btitle=2019%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics%20(SMC)&rft.au=Zanini,%20Rafael%20Anicet&rft.date=2019-10&rft.spage=2446&rft.epage=2453&rft.pages=2446-2453&rft.eissn=2577-1655&rft_id=info:doi/10.1109/SMC.2019.8914553&rft.eisbn=1728145694&rft.eisbn_list=9781728145693&rft_dat=%3Cieee_CHZPO%3E8914553%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c250t-b9d077efb5b3a31916465f792e50c05bf64a1368258e79cc05b256aef31d60f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8914553&rfr_iscdi=true