Loading…
Parkinson's Disease EMG Signal Prediction Using Neural Networks
This paper proposes a comparison between different neural network models, using multilayer perceptron (MLPs) and recurrent neural network (RNN) models, for predicting Parkinson's disease electromyography (EMG) signals, to anticipate resulting resting tremor patterns. The experimental results in...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c250t-b9d077efb5b3a31916465f792e50c05bf64a1368258e79cc05b256aef31d60f33 |
---|---|
cites | |
container_end_page | 2453 |
container_issue | |
container_start_page | 2446 |
container_title | |
container_volume | |
creator | Zanini, Rafael Anicet Colombini, Esther Luna de Castro, Maria Claudia Ferrari |
description | This paper proposes a comparison between different neural network models, using multilayer perceptron (MLPs) and recurrent neural network (RNN) models, for predicting Parkinson's disease electromyography (EMG) signals, to anticipate resulting resting tremor patterns. The experimental results indicate that the proposed models can adapt to different frequencies and amplitudes of tremor, and provide reasonable predictions for both EMG envelopes and EMG raw signals. Therefore, one could use these models as input for a control strategy for functional electrical stimulation (FES) devices used on tremor suppression, by dynamically predicting and improving FES control parameters based on tremor forecast. |
doi_str_mv | 10.1109/SMC.2019.8914553 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8914553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8914553</ieee_id><sourcerecordid>8914553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-b9d077efb5b3a31916465f792e50c05bf64a1368258e79cc05b256aef31d60f33</originalsourceid><addsrcrecordid>eNotj0FLwzAYhqMguE3vgpfcPLXmS_olzUmkzilsczB3Hmn7ZcTNVpLJ8N87cafn5Tm88DB2AyIHEPZ-OatyKcDmpYUCUZ2xIRhZHre2xTkbSDQmA414yYYpfQghRQHlgD0sXNyGLvXdXeJPIZFLxMezCV-GTed2fBGpDc0-9B1fpdBt-Jy-49HPaX_o4zZdsQvvdomuTxyx1fP4vXrJpm-T1-pxmjUSxT6rbSuMIV9jrZwCC7rQ6I2VhKIRWHtdOFC6lFiSsc2fkqgdeQWtFl6pEbv9_w1EtP6K4dPFn_UpVv0CDitHKw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parkinson's Disease EMG Signal Prediction Using Neural Networks</title><source>IEEE Xplore All Conference Series</source><creator>Zanini, Rafael Anicet ; Colombini, Esther Luna ; de Castro, Maria Claudia Ferrari</creator><creatorcontrib>Zanini, Rafael Anicet ; Colombini, Esther Luna ; de Castro, Maria Claudia Ferrari</creatorcontrib><description>This paper proposes a comparison between different neural network models, using multilayer perceptron (MLPs) and recurrent neural network (RNN) models, for predicting Parkinson's disease electromyography (EMG) signals, to anticipate resulting resting tremor patterns. The experimental results indicate that the proposed models can adapt to different frequencies and amplitudes of tremor, and provide reasonable predictions for both EMG envelopes and EMG raw signals. Therefore, one could use these models as input for a control strategy for functional electrical stimulation (FES) devices used on tremor suppression, by dynamically predicting and improving FES control parameters based on tremor forecast.</description><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 1728145694</identifier><identifier>EISBN: 9781728145693</identifier><identifier>DOI: 10.1109/SMC.2019.8914553</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Correlation ; Electromyography ; Iron ; Neurons ; Predictive models ; Recurrent neural networks</subject><ispartof>2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), 2019, p.2446-2453</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c250t-b9d077efb5b3a31916465f792e50c05bf64a1368258e79cc05b256aef31d60f33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8914553$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8914553$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zanini, Rafael Anicet</creatorcontrib><creatorcontrib>Colombini, Esther Luna</creatorcontrib><creatorcontrib>de Castro, Maria Claudia Ferrari</creatorcontrib><title>Parkinson's Disease EMG Signal Prediction Using Neural Networks</title><title>2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)</title><addtitle>SMC</addtitle><description>This paper proposes a comparison between different neural network models, using multilayer perceptron (MLPs) and recurrent neural network (RNN) models, for predicting Parkinson's disease electromyography (EMG) signals, to anticipate resulting resting tremor patterns. The experimental results indicate that the proposed models can adapt to different frequencies and amplitudes of tremor, and provide reasonable predictions for both EMG envelopes and EMG raw signals. Therefore, one could use these models as input for a control strategy for functional electrical stimulation (FES) devices used on tremor suppression, by dynamically predicting and improving FES control parameters based on tremor forecast.</description><subject>Adaptation models</subject><subject>Correlation</subject><subject>Electromyography</subject><subject>Iron</subject><subject>Neurons</subject><subject>Predictive models</subject><subject>Recurrent neural networks</subject><issn>2577-1655</issn><isbn>1728145694</isbn><isbn>9781728145693</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj0FLwzAYhqMguE3vgpfcPLXmS_olzUmkzilsczB3Hmn7ZcTNVpLJ8N87cafn5Tm88DB2AyIHEPZ-OatyKcDmpYUCUZ2xIRhZHre2xTkbSDQmA414yYYpfQghRQHlgD0sXNyGLvXdXeJPIZFLxMezCV-GTed2fBGpDc0-9B1fpdBt-Jy-49HPaX_o4zZdsQvvdomuTxyx1fP4vXrJpm-T1-pxmjUSxT6rbSuMIV9jrZwCC7rQ6I2VhKIRWHtdOFC6lFiSsc2fkqgdeQWtFl6pEbv9_w1EtP6K4dPFn_UpVv0CDitHKw</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Zanini, Rafael Anicet</creator><creator>Colombini, Esther Luna</creator><creator>de Castro, Maria Claudia Ferrari</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201910</creationdate><title>Parkinson's Disease EMG Signal Prediction Using Neural Networks</title><author>Zanini, Rafael Anicet ; Colombini, Esther Luna ; de Castro, Maria Claudia Ferrari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-b9d077efb5b3a31916465f792e50c05bf64a1368258e79cc05b256aef31d60f33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>Correlation</topic><topic>Electromyography</topic><topic>Iron</topic><topic>Neurons</topic><topic>Predictive models</topic><topic>Recurrent neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Zanini, Rafael Anicet</creatorcontrib><creatorcontrib>Colombini, Esther Luna</creatorcontrib><creatorcontrib>de Castro, Maria Claudia Ferrari</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zanini, Rafael Anicet</au><au>Colombini, Esther Luna</au><au>de Castro, Maria Claudia Ferrari</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parkinson's Disease EMG Signal Prediction Using Neural Networks</atitle><btitle>2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)</btitle><stitle>SMC</stitle><date>2019-10</date><risdate>2019</risdate><spage>2446</spage><epage>2453</epage><pages>2446-2453</pages><eissn>2577-1655</eissn><eisbn>1728145694</eisbn><eisbn>9781728145693</eisbn><abstract>This paper proposes a comparison between different neural network models, using multilayer perceptron (MLPs) and recurrent neural network (RNN) models, for predicting Parkinson's disease electromyography (EMG) signals, to anticipate resulting resting tremor patterns. The experimental results indicate that the proposed models can adapt to different frequencies and amplitudes of tremor, and provide reasonable predictions for both EMG envelopes and EMG raw signals. Therefore, one could use these models as input for a control strategy for functional electrical stimulation (FES) devices used on tremor suppression, by dynamically predicting and improving FES control parameters based on tremor forecast.</abstract><pub>IEEE</pub><doi>10.1109/SMC.2019.8914553</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2577-1655 |
ispartof | 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), 2019, p.2446-2453 |
issn | 2577-1655 |
language | eng |
recordid | cdi_ieee_primary_8914553 |
source | IEEE Xplore All Conference Series |
subjects | Adaptation models Correlation Electromyography Iron Neurons Predictive models Recurrent neural networks |
title | Parkinson's Disease EMG Signal Prediction Using Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parkinson's%20Disease%20EMG%20Signal%20Prediction%20Using%20Neural%20Networks&rft.btitle=2019%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics%20(SMC)&rft.au=Zanini,%20Rafael%20Anicet&rft.date=2019-10&rft.spage=2446&rft.epage=2453&rft.pages=2446-2453&rft.eissn=2577-1655&rft_id=info:doi/10.1109/SMC.2019.8914553&rft.eisbn=1728145694&rft.eisbn_list=9781728145693&rft_dat=%3Cieee_CHZPO%3E8914553%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c250t-b9d077efb5b3a31916465f792e50c05bf64a1368258e79cc05b256aef31d60f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8914553&rfr_iscdi=true |