Loading…
Variable-Weight Block Dual-Diagonal Structure for Low-Rate QC LDPC Codes With Low Error Floors
Irregular quasi-cyclic (QC) low-density parity-check (LDPC) codes with the block dual-diagonal (BDD) parity structure are widely adopted in many communication standards because the BDD structure supports an efficient encoding and many degree-2 variable nodes inside are adequate for the construction...
Saved in:
Published in: | IEEE transactions on communications 2020-03, Vol.68 (3), p.1344-1357 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Irregular quasi-cyclic (QC) low-density parity-check (LDPC) codes with the block dual-diagonal (BDD) parity structure are widely adopted in many communication standards because the BDD structure supports an efficient encoding and many degree-2 variable nodes inside are adequate for the construction of mid- to high-rate codes. However, we observe that low-rate irregular QC LDPC codes with the BDD parity structure inherently contain too many degree-2 variable nodes and suffer from error floors in high signal-to-noise ratio (SNR) region. In this paper, a generalized BDD structure including double-weight circulants as well as circulant permutation matrices is proposed for low-rate irregular QC LDPC codes with low error floors which is achieved with a little bit giving up error performance in the waterfall region. When constructing the parity part of a code with the generalized BDD structure, the portion of double-weight circulants is variable so that the resulting LDPC code can achieve a desired degree distribution including degrees 2 and 3 while supporting the efficient encoding. We show that low-rate QC LDPC codes constructed with the proposed BDD structure have better theoretical properties and lower error floor than those with the conventional BDD structure. |
---|---|
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/TCOMM.2019.2957474 |