Loading…

Predicting combined-cycle natural gas power plant emissions by using artificial neural networks

Gaseous emission from a chimney is recognized as one of the sources of pollution produced from a typical power plant. Among the pollutants of concern from the chimney of the power plant are NO/sub x/, SO/sub 2/ and CO. Commonly, the application of continuous emission monitoring systems (CEMS) is use...

Full description

Saved in:
Bibliographic Details
Main Authors: Azid, I.A., Ripin, Z.M., Aris, M.S., Ahmad, A.L., Seetharamu, K.N., Yusoff, R.M.
Format: Book Chapter
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1099-f5562fdbb566b7f311c5dfa7f8af6b3df9b906b5dcf854bf0a5257bfd76f3f733
cites
container_end_page 517 vol.3
container_issue
container_start_page 512
container_title
container_volume 3
creator Azid, I.A.
Ripin, Z.M.
Aris, M.S.
Ahmad, A.L.
Seetharamu, K.N.
Yusoff, R.M.
description Gaseous emission from a chimney is recognized as one of the sources of pollution produced from a typical power plant. Among the pollutants of concern from the chimney of the power plant are NO/sub x/, SO/sub 2/ and CO. Commonly, the application of continuous emission monitoring systems (CEMS) is used to measure the emissions directly. It is possible however, to predict stack gases from the combustion chamber indirectly so that a build up of a database on related input and output of various parameters can be generated. From this relationship, the critical points of various parameters can be optimized to limit the pollution from the chimney. An artificial neural networks (ANN) based on a feedforward backpropagation model is selected for this objective. The limited data taken from Lumut Power Plant are used to train the neural network. This prediction from neural network based on training agrees well with the data taken from CEMS.
doi_str_mv 10.1109/TENCON.2000.892319
format book_chapter
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_892319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>892319</ieee_id><sourcerecordid>892319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1099-f5562fdbb566b7f311c5dfa7f8af6b3df9b906b5dcf854bf0a5257bfd76f3f733</originalsourceid><addsrcrecordid>eNotUMlqwzAUFJRCS-ofyEk_YFeyKsk6FpMuEJIe0rPR9oJaRzaSQ_Df120KA3OYhWEQWlNSUUrU42Gza_e7qiaEVI2qGVU3qFCyIQuYYJzLO1Tk_LXohBNJFLlH3UfyLtgpxCO2w8mE6F1pZ9t7HPV0TrrHR53xOFx8wmOv44T9KeQchpixmfE5_yZ1mgIEGxZ39H-h6KfLkL7zA7oF3Wdf_PMKfb5sDu1bud2_vrfP29Iuy1UJnIsanDFcCCOBUWq5Ay2h0SAMc6CMIsJwZ6HhTwaI5jWXBpwUwEAytkLra2_w3ndjCied5u76AvsBk0JV3g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Predicting combined-cycle natural gas power plant emissions by using artificial neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Azid, I.A. ; Ripin, Z.M. ; Aris, M.S. ; Ahmad, A.L. ; Seetharamu, K.N. ; Yusoff, R.M.</creator><creatorcontrib>Azid, I.A. ; Ripin, Z.M. ; Aris, M.S. ; Ahmad, A.L. ; Seetharamu, K.N. ; Yusoff, R.M.</creatorcontrib><description>Gaseous emission from a chimney is recognized as one of the sources of pollution produced from a typical power plant. Among the pollutants of concern from the chimney of the power plant are NO/sub x/, SO/sub 2/ and CO. Commonly, the application of continuous emission monitoring systems (CEMS) is used to measure the emissions directly. It is possible however, to predict stack gases from the combustion chamber indirectly so that a build up of a database on related input and output of various parameters can be generated. From this relationship, the critical points of various parameters can be optimized to limit the pollution from the chimney. An artificial neural networks (ANN) based on a feedforward backpropagation model is selected for this objective. The limited data taken from Lumut Power Plant are used to train the neural network. This prediction from neural network based on training agrees well with the data taken from CEMS.</description><identifier>ISBN: 9780780363557</identifier><identifier>ISBN: 0780363558</identifier><identifier>DOI: 10.1109/TENCON.2000.892319</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Backpropagation ; Combustion ; Gases ; Monitoring ; Natural gas ; Pollution measurement ; Power generation ; Power measurement</subject><ispartof>2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119), 2000, Vol.3, p.512-517 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1099-f5562fdbb566b7f311c5dfa7f8af6b3df9b906b5dcf854bf0a5257bfd76f3f733</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/892319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/892319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Azid, I.A.</creatorcontrib><creatorcontrib>Ripin, Z.M.</creatorcontrib><creatorcontrib>Aris, M.S.</creatorcontrib><creatorcontrib>Ahmad, A.L.</creatorcontrib><creatorcontrib>Seetharamu, K.N.</creatorcontrib><creatorcontrib>Yusoff, R.M.</creatorcontrib><title>Predicting combined-cycle natural gas power plant emissions by using artificial neural networks</title><title>2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119)</title><addtitle>TENCON</addtitle><description>Gaseous emission from a chimney is recognized as one of the sources of pollution produced from a typical power plant. Among the pollutants of concern from the chimney of the power plant are NO/sub x/, SO/sub 2/ and CO. Commonly, the application of continuous emission monitoring systems (CEMS) is used to measure the emissions directly. It is possible however, to predict stack gases from the combustion chamber indirectly so that a build up of a database on related input and output of various parameters can be generated. From this relationship, the critical points of various parameters can be optimized to limit the pollution from the chimney. An artificial neural networks (ANN) based on a feedforward backpropagation model is selected for this objective. The limited data taken from Lumut Power Plant are used to train the neural network. This prediction from neural network based on training agrees well with the data taken from CEMS.</description><subject>Artificial neural networks</subject><subject>Backpropagation</subject><subject>Combustion</subject><subject>Gases</subject><subject>Monitoring</subject><subject>Natural gas</subject><subject>Pollution measurement</subject><subject>Power generation</subject><subject>Power measurement</subject><isbn>9780780363557</isbn><isbn>0780363558</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2000</creationdate><recordtype>book_chapter</recordtype><sourceid>6IE</sourceid><recordid>eNotUMlqwzAUFJRCS-ofyEk_YFeyKsk6FpMuEJIe0rPR9oJaRzaSQ_Df120KA3OYhWEQWlNSUUrU42Gza_e7qiaEVI2qGVU3qFCyIQuYYJzLO1Tk_LXohBNJFLlH3UfyLtgpxCO2w8mE6F1pZ9t7HPV0TrrHR53xOFx8wmOv44T9KeQchpixmfE5_yZ1mgIEGxZ39H-h6KfLkL7zA7oF3Wdf_PMKfb5sDu1bud2_vrfP29Iuy1UJnIsanDFcCCOBUWq5Ay2h0SAMc6CMIsJwZ6HhTwaI5jWXBpwUwEAytkLra2_w3ndjCied5u76AvsBk0JV3g</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Azid, I.A.</creator><creator>Ripin, Z.M.</creator><creator>Aris, M.S.</creator><creator>Ahmad, A.L.</creator><creator>Seetharamu, K.N.</creator><creator>Yusoff, R.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Predicting combined-cycle natural gas power plant emissions by using artificial neural networks</title><author>Azid, I.A. ; Ripin, Z.M. ; Aris, M.S. ; Ahmad, A.L. ; Seetharamu, K.N. ; Yusoff, R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1099-f5562fdbb566b7f311c5dfa7f8af6b3df9b906b5dcf854bf0a5257bfd76f3f733</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Artificial neural networks</topic><topic>Backpropagation</topic><topic>Combustion</topic><topic>Gases</topic><topic>Monitoring</topic><topic>Natural gas</topic><topic>Pollution measurement</topic><topic>Power generation</topic><topic>Power measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Azid, I.A.</creatorcontrib><creatorcontrib>Ripin, Z.M.</creatorcontrib><creatorcontrib>Aris, M.S.</creatorcontrib><creatorcontrib>Ahmad, A.L.</creatorcontrib><creatorcontrib>Seetharamu, K.N.</creatorcontrib><creatorcontrib>Yusoff, R.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Azid, I.A.</au><au>Ripin, Z.M.</au><au>Aris, M.S.</au><au>Ahmad, A.L.</au><au>Seetharamu, K.N.</au><au>Yusoff, R.M.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Predicting combined-cycle natural gas power plant emissions by using artificial neural networks</atitle><btitle>2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119)</btitle><stitle>TENCON</stitle><date>2000</date><risdate>2000</risdate><volume>3</volume><spage>512</spage><epage>517 vol.3</epage><pages>512-517 vol.3</pages><isbn>9780780363557</isbn><isbn>0780363558</isbn><abstract>Gaseous emission from a chimney is recognized as one of the sources of pollution produced from a typical power plant. Among the pollutants of concern from the chimney of the power plant are NO/sub x/, SO/sub 2/ and CO. Commonly, the application of continuous emission monitoring systems (CEMS) is used to measure the emissions directly. It is possible however, to predict stack gases from the combustion chamber indirectly so that a build up of a database on related input and output of various parameters can be generated. From this relationship, the critical points of various parameters can be optimized to limit the pollution from the chimney. An artificial neural networks (ANN) based on a feedforward backpropagation model is selected for this objective. The limited data taken from Lumut Power Plant are used to train the neural network. This prediction from neural network based on training agrees well with the data taken from CEMS.</abstract><pub>IEEE</pub><doi>10.1109/TENCON.2000.892319</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780363557
ispartof 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119), 2000, Vol.3, p.512-517 vol.3
issn
language eng
recordid cdi_ieee_primary_892319
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Backpropagation
Combustion
Gases
Monitoring
Natural gas
Pollution measurement
Power generation
Power measurement
title Predicting combined-cycle natural gas power plant emissions by using artificial neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A29%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Predicting%20combined-cycle%20natural%20gas%20power%20plant%20emissions%20by%20using%20artificial%20neural%20networks&rft.btitle=2000%20TENCON%20Proceedings.%20Intelligent%20Systems%20and%20Technologies%20for%20the%20New%20Millennium%20(Cat.%20No.00CH37119)&rft.au=Azid,%20I.A.&rft.date=2000&rft.volume=3&rft.spage=512&rft.epage=517%20vol.3&rft.pages=512-517%20vol.3&rft.isbn=9780780363557&rft.isbn_list=0780363558&rft_id=info:doi/10.1109/TENCON.2000.892319&rft_dat=%3Cieee_6IE%3E892319%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1099-f5562fdbb566b7f311c5dfa7f8af6b3df9b906b5dcf854bf0a5257bfd76f3f733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=892319&rfr_iscdi=true