Loading…
Predicting combined-cycle natural gas power plant emissions by using artificial neural networks
Gaseous emission from a chimney is recognized as one of the sources of pollution produced from a typical power plant. Among the pollutants of concern from the chimney of the power plant are NO/sub x/, SO/sub 2/ and CO. Commonly, the application of continuous emission monitoring systems (CEMS) is use...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Book Chapter |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1099-f5562fdbb566b7f311c5dfa7f8af6b3df9b906b5dcf854bf0a5257bfd76f3f733 |
---|---|
cites | |
container_end_page | 517 vol.3 |
container_issue | |
container_start_page | 512 |
container_title | |
container_volume | 3 |
creator | Azid, I.A. Ripin, Z.M. Aris, M.S. Ahmad, A.L. Seetharamu, K.N. Yusoff, R.M. |
description | Gaseous emission from a chimney is recognized as one of the sources of pollution produced from a typical power plant. Among the pollutants of concern from the chimney of the power plant are NO/sub x/, SO/sub 2/ and CO. Commonly, the application of continuous emission monitoring systems (CEMS) is used to measure the emissions directly. It is possible however, to predict stack gases from the combustion chamber indirectly so that a build up of a database on related input and output of various parameters can be generated. From this relationship, the critical points of various parameters can be optimized to limit the pollution from the chimney. An artificial neural networks (ANN) based on a feedforward backpropagation model is selected for this objective. The limited data taken from Lumut Power Plant are used to train the neural network. This prediction from neural network based on training agrees well with the data taken from CEMS. |
doi_str_mv | 10.1109/TENCON.2000.892319 |
format | book_chapter |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_892319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>892319</ieee_id><sourcerecordid>892319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1099-f5562fdbb566b7f311c5dfa7f8af6b3df9b906b5dcf854bf0a5257bfd76f3f733</originalsourceid><addsrcrecordid>eNotUMlqwzAUFJRCS-ofyEk_YFeyKsk6FpMuEJIe0rPR9oJaRzaSQ_Df120KA3OYhWEQWlNSUUrU42Gza_e7qiaEVI2qGVU3qFCyIQuYYJzLO1Tk_LXohBNJFLlH3UfyLtgpxCO2w8mE6F1pZ9t7HPV0TrrHR53xOFx8wmOv44T9KeQchpixmfE5_yZ1mgIEGxZ39H-h6KfLkL7zA7oF3Wdf_PMKfb5sDu1bud2_vrfP29Iuy1UJnIsanDFcCCOBUWq5Ay2h0SAMc6CMIsJwZ6HhTwaI5jWXBpwUwEAytkLra2_w3ndjCied5u76AvsBk0JV3g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Predicting combined-cycle natural gas power plant emissions by using artificial neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Azid, I.A. ; Ripin, Z.M. ; Aris, M.S. ; Ahmad, A.L. ; Seetharamu, K.N. ; Yusoff, R.M.</creator><creatorcontrib>Azid, I.A. ; Ripin, Z.M. ; Aris, M.S. ; Ahmad, A.L. ; Seetharamu, K.N. ; Yusoff, R.M.</creatorcontrib><description>Gaseous emission from a chimney is recognized as one of the sources of pollution produced from a typical power plant. Among the pollutants of concern from the chimney of the power plant are NO/sub x/, SO/sub 2/ and CO. Commonly, the application of continuous emission monitoring systems (CEMS) is used to measure the emissions directly. It is possible however, to predict stack gases from the combustion chamber indirectly so that a build up of a database on related input and output of various parameters can be generated. From this relationship, the critical points of various parameters can be optimized to limit the pollution from the chimney. An artificial neural networks (ANN) based on a feedforward backpropagation model is selected for this objective. The limited data taken from Lumut Power Plant are used to train the neural network. This prediction from neural network based on training agrees well with the data taken from CEMS.</description><identifier>ISBN: 9780780363557</identifier><identifier>ISBN: 0780363558</identifier><identifier>DOI: 10.1109/TENCON.2000.892319</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Backpropagation ; Combustion ; Gases ; Monitoring ; Natural gas ; Pollution measurement ; Power generation ; Power measurement</subject><ispartof>2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119), 2000, Vol.3, p.512-517 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1099-f5562fdbb566b7f311c5dfa7f8af6b3df9b906b5dcf854bf0a5257bfd76f3f733</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/892319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/892319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Azid, I.A.</creatorcontrib><creatorcontrib>Ripin, Z.M.</creatorcontrib><creatorcontrib>Aris, M.S.</creatorcontrib><creatorcontrib>Ahmad, A.L.</creatorcontrib><creatorcontrib>Seetharamu, K.N.</creatorcontrib><creatorcontrib>Yusoff, R.M.</creatorcontrib><title>Predicting combined-cycle natural gas power plant emissions by using artificial neural networks</title><title>2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119)</title><addtitle>TENCON</addtitle><description>Gaseous emission from a chimney is recognized as one of the sources of pollution produced from a typical power plant. Among the pollutants of concern from the chimney of the power plant are NO/sub x/, SO/sub 2/ and CO. Commonly, the application of continuous emission monitoring systems (CEMS) is used to measure the emissions directly. It is possible however, to predict stack gases from the combustion chamber indirectly so that a build up of a database on related input and output of various parameters can be generated. From this relationship, the critical points of various parameters can be optimized to limit the pollution from the chimney. An artificial neural networks (ANN) based on a feedforward backpropagation model is selected for this objective. The limited data taken from Lumut Power Plant are used to train the neural network. This prediction from neural network based on training agrees well with the data taken from CEMS.</description><subject>Artificial neural networks</subject><subject>Backpropagation</subject><subject>Combustion</subject><subject>Gases</subject><subject>Monitoring</subject><subject>Natural gas</subject><subject>Pollution measurement</subject><subject>Power generation</subject><subject>Power measurement</subject><isbn>9780780363557</isbn><isbn>0780363558</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2000</creationdate><recordtype>book_chapter</recordtype><sourceid>6IE</sourceid><recordid>eNotUMlqwzAUFJRCS-ofyEk_YFeyKsk6FpMuEJIe0rPR9oJaRzaSQ_Df120KA3OYhWEQWlNSUUrU42Gza_e7qiaEVI2qGVU3qFCyIQuYYJzLO1Tk_LXohBNJFLlH3UfyLtgpxCO2w8mE6F1pZ9t7HPV0TrrHR53xOFx8wmOv44T9KeQchpixmfE5_yZ1mgIEGxZ39H-h6KfLkL7zA7oF3Wdf_PMKfb5sDu1bud2_vrfP29Iuy1UJnIsanDFcCCOBUWq5Ay2h0SAMc6CMIsJwZ6HhTwaI5jWXBpwUwEAytkLra2_w3ndjCied5u76AvsBk0JV3g</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Azid, I.A.</creator><creator>Ripin, Z.M.</creator><creator>Aris, M.S.</creator><creator>Ahmad, A.L.</creator><creator>Seetharamu, K.N.</creator><creator>Yusoff, R.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Predicting combined-cycle natural gas power plant emissions by using artificial neural networks</title><author>Azid, I.A. ; Ripin, Z.M. ; Aris, M.S. ; Ahmad, A.L. ; Seetharamu, K.N. ; Yusoff, R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1099-f5562fdbb566b7f311c5dfa7f8af6b3df9b906b5dcf854bf0a5257bfd76f3f733</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Artificial neural networks</topic><topic>Backpropagation</topic><topic>Combustion</topic><topic>Gases</topic><topic>Monitoring</topic><topic>Natural gas</topic><topic>Pollution measurement</topic><topic>Power generation</topic><topic>Power measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Azid, I.A.</creatorcontrib><creatorcontrib>Ripin, Z.M.</creatorcontrib><creatorcontrib>Aris, M.S.</creatorcontrib><creatorcontrib>Ahmad, A.L.</creatorcontrib><creatorcontrib>Seetharamu, K.N.</creatorcontrib><creatorcontrib>Yusoff, R.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Azid, I.A.</au><au>Ripin, Z.M.</au><au>Aris, M.S.</au><au>Ahmad, A.L.</au><au>Seetharamu, K.N.</au><au>Yusoff, R.M.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Predicting combined-cycle natural gas power plant emissions by using artificial neural networks</atitle><btitle>2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119)</btitle><stitle>TENCON</stitle><date>2000</date><risdate>2000</risdate><volume>3</volume><spage>512</spage><epage>517 vol.3</epage><pages>512-517 vol.3</pages><isbn>9780780363557</isbn><isbn>0780363558</isbn><abstract>Gaseous emission from a chimney is recognized as one of the sources of pollution produced from a typical power plant. Among the pollutants of concern from the chimney of the power plant are NO/sub x/, SO/sub 2/ and CO. Commonly, the application of continuous emission monitoring systems (CEMS) is used to measure the emissions directly. It is possible however, to predict stack gases from the combustion chamber indirectly so that a build up of a database on related input and output of various parameters can be generated. From this relationship, the critical points of various parameters can be optimized to limit the pollution from the chimney. An artificial neural networks (ANN) based on a feedforward backpropagation model is selected for this objective. The limited data taken from Lumut Power Plant are used to train the neural network. This prediction from neural network based on training agrees well with the data taken from CEMS.</abstract><pub>IEEE</pub><doi>10.1109/TENCON.2000.892319</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780363557 |
ispartof | 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119), 2000, Vol.3, p.512-517 vol.3 |
issn | |
language | eng |
recordid | cdi_ieee_primary_892319 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Backpropagation Combustion Gases Monitoring Natural gas Pollution measurement Power generation Power measurement |
title | Predicting combined-cycle natural gas power plant emissions by using artificial neural networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A29%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Predicting%20combined-cycle%20natural%20gas%20power%20plant%20emissions%20by%20using%20artificial%20neural%20networks&rft.btitle=2000%20TENCON%20Proceedings.%20Intelligent%20Systems%20and%20Technologies%20for%20the%20New%20Millennium%20(Cat.%20No.00CH37119)&rft.au=Azid,%20I.A.&rft.date=2000&rft.volume=3&rft.spage=512&rft.epage=517%20vol.3&rft.pages=512-517%20vol.3&rft.isbn=9780780363557&rft.isbn_list=0780363558&rft_id=info:doi/10.1109/TENCON.2000.892319&rft_dat=%3Cieee_6IE%3E892319%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1099-f5562fdbb566b7f311c5dfa7f8af6b3df9b906b5dcf854bf0a5257bfd76f3f733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=892319&rfr_iscdi=true |