Loading…
Automating News Summarization with Sentence Vectors Offset
Text summaries consist of short versions of texts that convey their key aspects and help readers understand the gist of such texts without reading them in full. Generating such summaries is important for users who must sift through ever-increasing volumes of the content generated on the web. However...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 107 |
container_issue | |
container_start_page | 102 |
container_title | |
container_volume | |
creator | Steinert, Mauricio Granada, Roger Aires, Joao Paulo Meneguzzi, Felipe |
description | Text summaries consist of short versions of texts that convey their key aspects and help readers understand the gist of such texts without reading them in full. Generating such summaries is important for users who must sift through ever-increasing volumes of the content generated on the web. However, generating high-quality summaries is time-consuming for humans and challenging for automated systems, since it involves understanding the semantics of the underlying texts in order to extract key information. In this work, we develop an extractive text summarization method using vector offsets, which we show empirically to be able to summarize texts from an Internet news corpus with an effectiveness competitive with state-of-the-art extractive techniques. |
doi_str_mv | 10.1109/BRACIS.2019.00027 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8924017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8924017</ieee_id><sourcerecordid>8924017</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-16dc4a391f1eb7ca2b9bcf7f48e060088bee18e02bddbbd8e0ef60b77a5d36d53</originalsourceid><addsrcrecordid>eNotjt1KxDAUhKMguKx9APEmL9Cak7T58W4tui4sLlj1dkmaE63YVtosiz69Ab2Z-RiGYQi5BFYAMHN9-7SqN03BGZiCMcbVCcmM0qC4hpJXAk7JgstS5DLpOcnm-SPVBGeirKoFuVkd4tjb2A1v9BGPM20OfW-n7idF40CPXXynDQ4RhxbpK7ZxnGa6C2HGeEHOgv2cMfv3JXm5v3uuH_Ltbr2pV9u8A9AxB-nb0goDAdCp1nJnXBtUKDUyyZjWDhESc-e9cz4RBsmcUrbyQvpKLMnV326HiPuvqUv_vvfa8JKBEr8SuUmD</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automating News Summarization with Sentence Vectors Offset</title><source>IEEE Xplore All Conference Series</source><creator>Steinert, Mauricio ; Granada, Roger ; Aires, Joao Paulo ; Meneguzzi, Felipe</creator><creatorcontrib>Steinert, Mauricio ; Granada, Roger ; Aires, Joao Paulo ; Meneguzzi, Felipe</creatorcontrib><description>Text summaries consist of short versions of texts that convey their key aspects and help readers understand the gist of such texts without reading them in full. Generating such summaries is important for users who must sift through ever-increasing volumes of the content generated on the web. However, generating high-quality summaries is time-consuming for humans and challenging for automated systems, since it involves understanding the semantics of the underlying texts in order to extract key information. In this work, we develop an extractive text summarization method using vector offsets, which we show empirically to be able to summarize texts from an Internet news corpus with an effectiveness competitive with state-of-the-art extractive techniques.</description><identifier>EISSN: 2643-6264</identifier><identifier>EISBN: 9781728142531</identifier><identifier>EISBN: 1728142539</identifier><identifier>DOI: 10.1109/BRACIS.2019.00027</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>automatic text summarization ; Gold ; information retrieval ; Internet ; Mathematical model ; natural language processing ; Neural networks ; Semantics ; Task analysis ; word embedding</subject><ispartof>2019 8th Brazilian Conference on Intelligent Systems (BRACIS), 2019, p.102-107</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8924017$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,27912,54542,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8924017$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Steinert, Mauricio</creatorcontrib><creatorcontrib>Granada, Roger</creatorcontrib><creatorcontrib>Aires, Joao Paulo</creatorcontrib><creatorcontrib>Meneguzzi, Felipe</creatorcontrib><title>Automating News Summarization with Sentence Vectors Offset</title><title>2019 8th Brazilian Conference on Intelligent Systems (BRACIS)</title><addtitle>BRACIS</addtitle><description>Text summaries consist of short versions of texts that convey their key aspects and help readers understand the gist of such texts without reading them in full. Generating such summaries is important for users who must sift through ever-increasing volumes of the content generated on the web. However, generating high-quality summaries is time-consuming for humans and challenging for automated systems, since it involves understanding the semantics of the underlying texts in order to extract key information. In this work, we develop an extractive text summarization method using vector offsets, which we show empirically to be able to summarize texts from an Internet news corpus with an effectiveness competitive with state-of-the-art extractive techniques.</description><subject>automatic text summarization</subject><subject>Gold</subject><subject>information retrieval</subject><subject>Internet</subject><subject>Mathematical model</subject><subject>natural language processing</subject><subject>Neural networks</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>word embedding</subject><issn>2643-6264</issn><isbn>9781728142531</isbn><isbn>1728142539</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjt1KxDAUhKMguKx9APEmL9Cak7T58W4tui4sLlj1dkmaE63YVtosiz69Ab2Z-RiGYQi5BFYAMHN9-7SqN03BGZiCMcbVCcmM0qC4hpJXAk7JgstS5DLpOcnm-SPVBGeirKoFuVkd4tjb2A1v9BGPM20OfW-n7idF40CPXXynDQ4RhxbpK7ZxnGa6C2HGeEHOgv2cMfv3JXm5v3uuH_Ltbr2pV9u8A9AxB-nb0goDAdCp1nJnXBtUKDUyyZjWDhESc-e9cz4RBsmcUrbyQvpKLMnV326HiPuvqUv_vvfa8JKBEr8SuUmD</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Steinert, Mauricio</creator><creator>Granada, Roger</creator><creator>Aires, Joao Paulo</creator><creator>Meneguzzi, Felipe</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201910</creationdate><title>Automating News Summarization with Sentence Vectors Offset</title><author>Steinert, Mauricio ; Granada, Roger ; Aires, Joao Paulo ; Meneguzzi, Felipe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-16dc4a391f1eb7ca2b9bcf7f48e060088bee18e02bddbbd8e0ef60b77a5d36d53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>automatic text summarization</topic><topic>Gold</topic><topic>information retrieval</topic><topic>Internet</topic><topic>Mathematical model</topic><topic>natural language processing</topic><topic>Neural networks</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>word embedding</topic><toplevel>online_resources</toplevel><creatorcontrib>Steinert, Mauricio</creatorcontrib><creatorcontrib>Granada, Roger</creatorcontrib><creatorcontrib>Aires, Joao Paulo</creatorcontrib><creatorcontrib>Meneguzzi, Felipe</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Steinert, Mauricio</au><au>Granada, Roger</au><au>Aires, Joao Paulo</au><au>Meneguzzi, Felipe</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automating News Summarization with Sentence Vectors Offset</atitle><btitle>2019 8th Brazilian Conference on Intelligent Systems (BRACIS)</btitle><stitle>BRACIS</stitle><date>2019-10</date><risdate>2019</risdate><spage>102</spage><epage>107</epage><pages>102-107</pages><eissn>2643-6264</eissn><eisbn>9781728142531</eisbn><eisbn>1728142539</eisbn><coden>IEEPAD</coden><abstract>Text summaries consist of short versions of texts that convey their key aspects and help readers understand the gist of such texts without reading them in full. Generating such summaries is important for users who must sift through ever-increasing volumes of the content generated on the web. However, generating high-quality summaries is time-consuming for humans and challenging for automated systems, since it involves understanding the semantics of the underlying texts in order to extract key information. In this work, we develop an extractive text summarization method using vector offsets, which we show empirically to be able to summarize texts from an Internet news corpus with an effectiveness competitive with state-of-the-art extractive techniques.</abstract><pub>IEEE</pub><doi>10.1109/BRACIS.2019.00027</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2643-6264 |
ispartof | 2019 8th Brazilian Conference on Intelligent Systems (BRACIS), 2019, p.102-107 |
issn | 2643-6264 |
language | eng |
recordid | cdi_ieee_primary_8924017 |
source | IEEE Xplore All Conference Series |
subjects | automatic text summarization Gold information retrieval Internet Mathematical model natural language processing Neural networks Semantics Task analysis word embedding |
title | Automating News Summarization with Sentence Vectors Offset |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A25%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automating%20News%20Summarization%20with%20Sentence%20Vectors%20Offset&rft.btitle=2019%208th%20Brazilian%20Conference%20on%20Intelligent%20Systems%20(BRACIS)&rft.au=Steinert,%20Mauricio&rft.date=2019-10&rft.spage=102&rft.epage=107&rft.pages=102-107&rft.eissn=2643-6264&rft.coden=IEEPAD&rft_id=info:doi/10.1109/BRACIS.2019.00027&rft.eisbn=9781728142531&rft.eisbn_list=1728142539&rft_dat=%3Cieee_CHZPO%3E8924017%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-16dc4a391f1eb7ca2b9bcf7f48e060088bee18e02bddbbd8e0ef60b77a5d36d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8924017&rfr_iscdi=true |