Loading…
Multiscale MAP filtering of SAR images
Synthetic aperture radar (SAR) images are disturbed by a multiplicative noise depending on the signal (the ground reflectivity) due to the radar wave coherence. Images have a strong variability from one pixel to another reducing essentially the efficiency of the algorithms of detection and classific...
Saved in:
Published in: | IEEE transactions on image processing 2001-01, Vol.10 (1), p.49-60 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-8e754b615aacb269ab065ed2ce499a0c39b05d207f0260171a014721c5c05ae03 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-8e754b615aacb269ab065ed2ce499a0c39b05d207f0260171a014721c5c05ae03 |
container_end_page | 60 |
container_issue | 1 |
container_start_page | 49 |
container_title | IEEE transactions on image processing |
container_volume | 10 |
creator | Foucher, S. Benie, G.B. Boucher, J.-M. |
description | Synthetic aperture radar (SAR) images are disturbed by a multiplicative noise depending on the signal (the ground reflectivity) due to the radar wave coherence. Images have a strong variability from one pixel to another reducing essentially the efficiency of the algorithms of detection and classification. We propose to filter this noise with a multiresolution analysis of the image. The wavelet coefficient of the reflectivity is estimated with a Bayesian model, maximizing the a posteriori probability density function. The different probability density function are modeled with the Pearson system of distributions. The resulting filter combines the classical adaptive approach with wavelet decomposition where the local variance of high-frequency images is used in order to segment and filter wavelet coefficients. |
doi_str_mv | 10.1109/83.892442 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_892442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>892442</ieee_id><sourcerecordid>733439534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-8e754b615aacb269ab065ed2ce499a0c39b05d207f0260171a014721c5c05ae03</originalsourceid><addsrcrecordid>eNp90MtLwzAcB_AgipvTg1cPUhR8HDrzfhzH8AUbio9zSLN0dHTtTNqD_70ZLQ48eEkC-ZB8f18AThEcIwTVnSRjqTCleA8MkaIohZDi_XiGTKQCUTUARyGsIESUIX4IBkhiqpjiQ3A1b8umCNaULplPXpO8KBvni2qZ1HnyPnlLirVZunAMDnJTBnfS7yPw-XD_MX1KZy-Pz9PJLLVEqiaVTjCaccSMsRnmymSQM7fA1lGlDLREZZAtMBQ5xBwigUyMJDCyzEJmHCQjcN29u_H1V-tCo9cxnCtLU7m6DVoQQolicRmBm38l4gIRRghmkV78oau69VWcQ0tJOaYxSUS3HbK-DsG7XG98nN1_awT1tmUtie5ajva8f7DN1m6xk32tEVz2wGyrzb2pbBF-naSC8G2us04VzrndZffHD1Qshwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884624017</pqid></control><display><type>article</type><title>Multiscale MAP filtering of SAR images</title><source>IEEE Xplore (Online service)</source><creator>Foucher, S. ; Benie, G.B. ; Boucher, J.-M.</creator><creatorcontrib>Foucher, S. ; Benie, G.B. ; Boucher, J.-M.</creatorcontrib><description>Synthetic aperture radar (SAR) images are disturbed by a multiplicative noise depending on the signal (the ground reflectivity) due to the radar wave coherence. Images have a strong variability from one pixel to another reducing essentially the efficiency of the algorithms of detection and classification. We propose to filter this noise with a multiresolution analysis of the image. The wavelet coefficient of the reflectivity is estimated with a Bayesian model, maximizing the a posteriori probability density function. The different probability density function are modeled with the Pearson system of distributions. The resulting filter combines the classical adaptive approach with wavelet decomposition where the local variance of high-frequency images is used in order to segment and filter wavelet coefficients.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/83.892442</identifier><identifier>PMID: 18249596</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive filters ; Applied sciences ; Coefficients ; Coherence ; Exact sciences and technology ; Filtering ; Fundamental areas of phenomenology (including applications) ; Image forming and processing ; Image processing ; Imaging and optical processing ; Information, signal and communications theory ; Noise ; Optics ; Physics ; Pixel ; Probability density function ; Probability density functions ; Radar detection ; Radar imaging ; Reflectivity ; Services and terminals of telecommunications ; Signal processing ; Synthetic aperture radar ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Telemetry. Remote supervision. Telewarning. Remote control ; Telemetry: remote control, remote sensing; radar ; Wavelet ; Wavelet coefficients</subject><ispartof>IEEE transactions on image processing, 2001-01, Vol.10 (1), p.49-60</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-8e754b615aacb269ab065ed2ce499a0c39b05d207f0260171a014721c5c05ae03</citedby><cites>FETCH-LOGICAL-c389t-8e754b615aacb269ab065ed2ce499a0c39b05d207f0260171a014721c5c05ae03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/892442$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4014,27914,27915,27916,54787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=847365$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18249596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Foucher, S.</creatorcontrib><creatorcontrib>Benie, G.B.</creatorcontrib><creatorcontrib>Boucher, J.-M.</creatorcontrib><title>Multiscale MAP filtering of SAR images</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Synthetic aperture radar (SAR) images are disturbed by a multiplicative noise depending on the signal (the ground reflectivity) due to the radar wave coherence. Images have a strong variability from one pixel to another reducing essentially the efficiency of the algorithms of detection and classification. We propose to filter this noise with a multiresolution analysis of the image. The wavelet coefficient of the reflectivity is estimated with a Bayesian model, maximizing the a posteriori probability density function. The different probability density function are modeled with the Pearson system of distributions. The resulting filter combines the classical adaptive approach with wavelet decomposition where the local variance of high-frequency images is used in order to segment and filter wavelet coefficients.</description><subject>Adaptive filters</subject><subject>Applied sciences</subject><subject>Coefficients</subject><subject>Coherence</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Image forming and processing</subject><subject>Image processing</subject><subject>Imaging and optical processing</subject><subject>Information, signal and communications theory</subject><subject>Noise</subject><subject>Optics</subject><subject>Physics</subject><subject>Pixel</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Radar detection</subject><subject>Radar imaging</subject><subject>Reflectivity</subject><subject>Services and terminals of telecommunications</subject><subject>Signal processing</subject><subject>Synthetic aperture radar</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Telemetry. Remote supervision. Telewarning. Remote control</subject><subject>Telemetry: remote control, remote sensing; radar</subject><subject>Wavelet</subject><subject>Wavelet coefficients</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp90MtLwzAcB_AgipvTg1cPUhR8HDrzfhzH8AUbio9zSLN0dHTtTNqD_70ZLQ48eEkC-ZB8f18AThEcIwTVnSRjqTCleA8MkaIohZDi_XiGTKQCUTUARyGsIESUIX4IBkhiqpjiQ3A1b8umCNaULplPXpO8KBvni2qZ1HnyPnlLirVZunAMDnJTBnfS7yPw-XD_MX1KZy-Pz9PJLLVEqiaVTjCaccSMsRnmymSQM7fA1lGlDLREZZAtMBQ5xBwigUyMJDCyzEJmHCQjcN29u_H1V-tCo9cxnCtLU7m6DVoQQolicRmBm38l4gIRRghmkV78oau69VWcQ0tJOaYxSUS3HbK-DsG7XG98nN1_awT1tmUtie5ajva8f7DN1m6xk32tEVz2wGyrzb2pbBF-naSC8G2us04VzrndZffHD1Qshwo</recordid><startdate>200101</startdate><enddate>200101</enddate><creator>Foucher, S.</creator><creator>Benie, G.B.</creator><creator>Boucher, J.-M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>200101</creationdate><title>Multiscale MAP filtering of SAR images</title><author>Foucher, S. ; Benie, G.B. ; Boucher, J.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-8e754b615aacb269ab065ed2ce499a0c39b05d207f0260171a014721c5c05ae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adaptive filters</topic><topic>Applied sciences</topic><topic>Coefficients</topic><topic>Coherence</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Image forming and processing</topic><topic>Image processing</topic><topic>Imaging and optical processing</topic><topic>Information, signal and communications theory</topic><topic>Noise</topic><topic>Optics</topic><topic>Physics</topic><topic>Pixel</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Radar detection</topic><topic>Radar imaging</topic><topic>Reflectivity</topic><topic>Services and terminals of telecommunications</topic><topic>Signal processing</topic><topic>Synthetic aperture radar</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Telemetry. Remote supervision. Telewarning. Remote control</topic><topic>Telemetry: remote control, remote sensing; radar</topic><topic>Wavelet</topic><topic>Wavelet coefficients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foucher, S.</creatorcontrib><creatorcontrib>Benie, G.B.</creatorcontrib><creatorcontrib>Boucher, J.-M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foucher, S.</au><au>Benie, G.B.</au><au>Boucher, J.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale MAP filtering of SAR images</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2001-01</date><risdate>2001</risdate><volume>10</volume><issue>1</issue><spage>49</spage><epage>60</epage><pages>49-60</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Synthetic aperture radar (SAR) images are disturbed by a multiplicative noise depending on the signal (the ground reflectivity) due to the radar wave coherence. Images have a strong variability from one pixel to another reducing essentially the efficiency of the algorithms of detection and classification. We propose to filter this noise with a multiresolution analysis of the image. The wavelet coefficient of the reflectivity is estimated with a Bayesian model, maximizing the a posteriori probability density function. The different probability density function are modeled with the Pearson system of distributions. The resulting filter combines the classical adaptive approach with wavelet decomposition where the local variance of high-frequency images is used in order to segment and filter wavelet coefficients.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18249596</pmid><doi>10.1109/83.892442</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2001-01, Vol.10 (1), p.49-60 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_ieee_primary_892442 |
source | IEEE Xplore (Online service) |
subjects | Adaptive filters Applied sciences Coefficients Coherence Exact sciences and technology Filtering Fundamental areas of phenomenology (including applications) Image forming and processing Image processing Imaging and optical processing Information, signal and communications theory Noise Optics Physics Pixel Probability density function Probability density functions Radar detection Radar imaging Reflectivity Services and terminals of telecommunications Signal processing Synthetic aperture radar Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Telemetry. Remote supervision. Telewarning. Remote control Telemetry: remote control, remote sensing radar Wavelet Wavelet coefficients |
title | Multiscale MAP filtering of SAR images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20MAP%20filtering%20of%20SAR%20images&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Foucher,%20S.&rft.date=2001-01&rft.volume=10&rft.issue=1&rft.spage=49&rft.epage=60&rft.pages=49-60&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/83.892442&rft_dat=%3Cproquest_ieee_%3E733439534%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-8e754b615aacb269ab065ed2ce499a0c39b05d207f0260171a014721c5c05ae03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884624017&rft_id=info:pmid/18249596&rft_ieee_id=892442&rfr_iscdi=true |