Loading…

Multiscale MAP filtering of SAR images

Synthetic aperture radar (SAR) images are disturbed by a multiplicative noise depending on the signal (the ground reflectivity) due to the radar wave coherence. Images have a strong variability from one pixel to another reducing essentially the efficiency of the algorithms of detection and classific...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2001-01, Vol.10 (1), p.49-60
Main Authors: Foucher, S., Benie, G.B., Boucher, J.-M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-8e754b615aacb269ab065ed2ce499a0c39b05d207f0260171a014721c5c05ae03
cites cdi_FETCH-LOGICAL-c389t-8e754b615aacb269ab065ed2ce499a0c39b05d207f0260171a014721c5c05ae03
container_end_page 60
container_issue 1
container_start_page 49
container_title IEEE transactions on image processing
container_volume 10
creator Foucher, S.
Benie, G.B.
Boucher, J.-M.
description Synthetic aperture radar (SAR) images are disturbed by a multiplicative noise depending on the signal (the ground reflectivity) due to the radar wave coherence. Images have a strong variability from one pixel to another reducing essentially the efficiency of the algorithms of detection and classification. We propose to filter this noise with a multiresolution analysis of the image. The wavelet coefficient of the reflectivity is estimated with a Bayesian model, maximizing the a posteriori probability density function. The different probability density function are modeled with the Pearson system of distributions. The resulting filter combines the classical adaptive approach with wavelet decomposition where the local variance of high-frequency images is used in order to segment and filter wavelet coefficients.
doi_str_mv 10.1109/83.892442
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_892442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>892442</ieee_id><sourcerecordid>733439534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-8e754b615aacb269ab065ed2ce499a0c39b05d207f0260171a014721c5c05ae03</originalsourceid><addsrcrecordid>eNp90MtLwzAcB_AgipvTg1cPUhR8HDrzfhzH8AUbio9zSLN0dHTtTNqD_70ZLQ48eEkC-ZB8f18AThEcIwTVnSRjqTCleA8MkaIohZDi_XiGTKQCUTUARyGsIESUIX4IBkhiqpjiQ3A1b8umCNaULplPXpO8KBvni2qZ1HnyPnlLirVZunAMDnJTBnfS7yPw-XD_MX1KZy-Pz9PJLLVEqiaVTjCaccSMsRnmymSQM7fA1lGlDLREZZAtMBQ5xBwigUyMJDCyzEJmHCQjcN29u_H1V-tCo9cxnCtLU7m6DVoQQolicRmBm38l4gIRRghmkV78oau69VWcQ0tJOaYxSUS3HbK-DsG7XG98nN1_awT1tmUtie5ajva8f7DN1m6xk32tEVz2wGyrzb2pbBF-naSC8G2us04VzrndZffHD1Qshwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884624017</pqid></control><display><type>article</type><title>Multiscale MAP filtering of SAR images</title><source>IEEE Xplore (Online service)</source><creator>Foucher, S. ; Benie, G.B. ; Boucher, J.-M.</creator><creatorcontrib>Foucher, S. ; Benie, G.B. ; Boucher, J.-M.</creatorcontrib><description>Synthetic aperture radar (SAR) images are disturbed by a multiplicative noise depending on the signal (the ground reflectivity) due to the radar wave coherence. Images have a strong variability from one pixel to another reducing essentially the efficiency of the algorithms of detection and classification. We propose to filter this noise with a multiresolution analysis of the image. The wavelet coefficient of the reflectivity is estimated with a Bayesian model, maximizing the a posteriori probability density function. The different probability density function are modeled with the Pearson system of distributions. The resulting filter combines the classical adaptive approach with wavelet decomposition where the local variance of high-frequency images is used in order to segment and filter wavelet coefficients.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/83.892442</identifier><identifier>PMID: 18249596</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive filters ; Applied sciences ; Coefficients ; Coherence ; Exact sciences and technology ; Filtering ; Fundamental areas of phenomenology (including applications) ; Image forming and processing ; Image processing ; Imaging and optical processing ; Information, signal and communications theory ; Noise ; Optics ; Physics ; Pixel ; Probability density function ; Probability density functions ; Radar detection ; Radar imaging ; Reflectivity ; Services and terminals of telecommunications ; Signal processing ; Synthetic aperture radar ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Telemetry. Remote supervision. Telewarning. Remote control ; Telemetry: remote control, remote sensing; radar ; Wavelet ; Wavelet coefficients</subject><ispartof>IEEE transactions on image processing, 2001-01, Vol.10 (1), p.49-60</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-8e754b615aacb269ab065ed2ce499a0c39b05d207f0260171a014721c5c05ae03</citedby><cites>FETCH-LOGICAL-c389t-8e754b615aacb269ab065ed2ce499a0c39b05d207f0260171a014721c5c05ae03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/892442$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4014,27914,27915,27916,54787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=847365$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18249596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Foucher, S.</creatorcontrib><creatorcontrib>Benie, G.B.</creatorcontrib><creatorcontrib>Boucher, J.-M.</creatorcontrib><title>Multiscale MAP filtering of SAR images</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Synthetic aperture radar (SAR) images are disturbed by a multiplicative noise depending on the signal (the ground reflectivity) due to the radar wave coherence. Images have a strong variability from one pixel to another reducing essentially the efficiency of the algorithms of detection and classification. We propose to filter this noise with a multiresolution analysis of the image. The wavelet coefficient of the reflectivity is estimated with a Bayesian model, maximizing the a posteriori probability density function. The different probability density function are modeled with the Pearson system of distributions. The resulting filter combines the classical adaptive approach with wavelet decomposition where the local variance of high-frequency images is used in order to segment and filter wavelet coefficients.</description><subject>Adaptive filters</subject><subject>Applied sciences</subject><subject>Coefficients</subject><subject>Coherence</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Image forming and processing</subject><subject>Image processing</subject><subject>Imaging and optical processing</subject><subject>Information, signal and communications theory</subject><subject>Noise</subject><subject>Optics</subject><subject>Physics</subject><subject>Pixel</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Radar detection</subject><subject>Radar imaging</subject><subject>Reflectivity</subject><subject>Services and terminals of telecommunications</subject><subject>Signal processing</subject><subject>Synthetic aperture radar</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Telemetry. Remote supervision. Telewarning. Remote control</subject><subject>Telemetry: remote control, remote sensing; radar</subject><subject>Wavelet</subject><subject>Wavelet coefficients</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp90MtLwzAcB_AgipvTg1cPUhR8HDrzfhzH8AUbio9zSLN0dHTtTNqD_70ZLQ48eEkC-ZB8f18AThEcIwTVnSRjqTCleA8MkaIohZDi_XiGTKQCUTUARyGsIESUIX4IBkhiqpjiQ3A1b8umCNaULplPXpO8KBvni2qZ1HnyPnlLirVZunAMDnJTBnfS7yPw-XD_MX1KZy-Pz9PJLLVEqiaVTjCaccSMsRnmymSQM7fA1lGlDLREZZAtMBQ5xBwigUyMJDCyzEJmHCQjcN29u_H1V-tCo9cxnCtLU7m6DVoQQolicRmBm38l4gIRRghmkV78oau69VWcQ0tJOaYxSUS3HbK-DsG7XG98nN1_awT1tmUtie5ajva8f7DN1m6xk32tEVz2wGyrzb2pbBF-naSC8G2us04VzrndZffHD1Qshwo</recordid><startdate>200101</startdate><enddate>200101</enddate><creator>Foucher, S.</creator><creator>Benie, G.B.</creator><creator>Boucher, J.-M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>200101</creationdate><title>Multiscale MAP filtering of SAR images</title><author>Foucher, S. ; Benie, G.B. ; Boucher, J.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-8e754b615aacb269ab065ed2ce499a0c39b05d207f0260171a014721c5c05ae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adaptive filters</topic><topic>Applied sciences</topic><topic>Coefficients</topic><topic>Coherence</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Image forming and processing</topic><topic>Image processing</topic><topic>Imaging and optical processing</topic><topic>Information, signal and communications theory</topic><topic>Noise</topic><topic>Optics</topic><topic>Physics</topic><topic>Pixel</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Radar detection</topic><topic>Radar imaging</topic><topic>Reflectivity</topic><topic>Services and terminals of telecommunications</topic><topic>Signal processing</topic><topic>Synthetic aperture radar</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Telemetry. Remote supervision. Telewarning. Remote control</topic><topic>Telemetry: remote control, remote sensing; radar</topic><topic>Wavelet</topic><topic>Wavelet coefficients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foucher, S.</creatorcontrib><creatorcontrib>Benie, G.B.</creatorcontrib><creatorcontrib>Boucher, J.-M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foucher, S.</au><au>Benie, G.B.</au><au>Boucher, J.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale MAP filtering of SAR images</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2001-01</date><risdate>2001</risdate><volume>10</volume><issue>1</issue><spage>49</spage><epage>60</epage><pages>49-60</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Synthetic aperture radar (SAR) images are disturbed by a multiplicative noise depending on the signal (the ground reflectivity) due to the radar wave coherence. Images have a strong variability from one pixel to another reducing essentially the efficiency of the algorithms of detection and classification. We propose to filter this noise with a multiresolution analysis of the image. The wavelet coefficient of the reflectivity is estimated with a Bayesian model, maximizing the a posteriori probability density function. The different probability density function are modeled with the Pearson system of distributions. The resulting filter combines the classical adaptive approach with wavelet decomposition where the local variance of high-frequency images is used in order to segment and filter wavelet coefficients.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18249596</pmid><doi>10.1109/83.892442</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2001-01, Vol.10 (1), p.49-60
issn 1057-7149
1941-0042
language eng
recordid cdi_ieee_primary_892442
source IEEE Xplore (Online service)
subjects Adaptive filters
Applied sciences
Coefficients
Coherence
Exact sciences and technology
Filtering
Fundamental areas of phenomenology (including applications)
Image forming and processing
Image processing
Imaging and optical processing
Information, signal and communications theory
Noise
Optics
Physics
Pixel
Probability density function
Probability density functions
Radar detection
Radar imaging
Reflectivity
Services and terminals of telecommunications
Signal processing
Synthetic aperture radar
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Telemetry. Remote supervision. Telewarning. Remote control
Telemetry: remote control, remote sensing
radar
Wavelet
Wavelet coefficients
title Multiscale MAP filtering of SAR images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20MAP%20filtering%20of%20SAR%20images&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Foucher,%20S.&rft.date=2001-01&rft.volume=10&rft.issue=1&rft.spage=49&rft.epage=60&rft.pages=49-60&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/83.892442&rft_dat=%3Cproquest_ieee_%3E733439534%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-8e754b615aacb269ab065ed2ce499a0c39b05d207f0260171a014721c5c05ae03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884624017&rft_id=info:pmid/18249596&rft_ieee_id=892442&rfr_iscdi=true