Loading…
Feedback Resonating Control for a Wave Energy Converter
Through the use of advanced control techniques, wave energy converters (WECs) can achieve substantial increases in energy absorption. The motion of the WEC device is a significant contribution to the energy absorbed by the device. Reactive (complex conjugate) control maximizes the energy absorption...
Saved in:
Published in: | IEEE transactions on industry applications 2020-03, Vol.56 (2), p.1862-1868 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c360t-1f703315ccd5f97f0beba71aea834fe4dd9ca18cffcc94c693fea3e8ec60a7613 |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-1f703315ccd5f97f0beba71aea834fe4dd9ca18cffcc94c693fea3e8ec60a7613 |
container_end_page | 1868 |
container_issue | 2 |
container_start_page | 1862 |
container_title | IEEE transactions on industry applications |
container_volume | 56 |
creator | Bacelli, Giorgio Nevarez, Victor G. Coe, Ryan G. Wilson, David |
description | Through the use of advanced control techniques, wave energy converters (WECs) can achieve substantial increases in energy absorption. The motion of the WEC device is a significant contribution to the energy absorbed by the device. Reactive (complex conjugate) control maximizes the energy absorption due to the impedance matching. The issue with complex conjugate control is that, in general, the controller is noncausal, which requires prediction of the incoming waves. This article explores the potential of employing system identification techniques to build a causal transfer function that approximates the complex conjugate controller over a finite frequency band of interest. This approach is quite viable given the band-limited nature of ocean waves. The resulting controller is stable, and the average efficiency of the power captured by the causal controller in realistic ocean waves is 99\%, when compared to the noncausal complex conjugate. |
doi_str_mv | 10.1109/TIA.2019.2958018 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8926523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8926523</ieee_id><sourcerecordid>2377357807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-1f703315ccd5f97f0beba71aea834fe4dd9ca18cffcc94c693fea3e8ec60a7613</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvRc-dL0zZ9xzE2HQwEmXgMWfoyO2czk2yw_96ODk_v8P2-j8ePsXsOI84Bn5fz8SgDjqMMiwp4dcEGHAWmKEp5yQYAKFJEzK_ZTQgbAJ4XPB8wOSOqV9p8J-8UXKtj066TiWujd9vEOp_o5FMfKJm25NfHU3IgH8nfsiurt4HuznfIPmbT5eQ1Xby9zCfjRWpECTHlVoIQvDCmLixKCytaack16UrklvK6RqN5Zaw1BnNTorCkBVVkStCy5GLIHvtdF2KjgmkimS_j2pZMVLwEmSN20FMP7bz73VOIauP2vu3-UpmQUhSyAtlR0FPGuxA8WbXzzY_2R8VBnRyqzqE6OVRnh13loa80RPSPV5iVRSbEH0NdbHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377357807</pqid></control><display><type>article</type><title>Feedback Resonating Control for a Wave Energy Converter</title><source>IEEE Xplore (Online service)</source><creator>Bacelli, Giorgio ; Nevarez, Victor ; G. Coe, Ryan ; G. Wilson, David</creator><creatorcontrib>Bacelli, Giorgio ; Nevarez, Victor ; G. Coe, Ryan ; G. Wilson, David ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Through the use of advanced control techniques, wave energy converters (WECs) can achieve substantial increases in energy absorption. The motion of the WEC device is a significant contribution to the energy absorbed by the device. Reactive (complex conjugate) control maximizes the energy absorption due to the impedance matching. The issue with complex conjugate control is that, in general, the controller is noncausal, which requires prediction of the incoming waves. This article explores the potential of employing system identification techniques to build a causal transfer function that approximates the complex conjugate controller over a finite frequency band of interest. This approach is quite viable given the band-limited nature of ocean waves. The resulting controller is stable, and the average efficiency of the power captured by the causal controller in realistic ocean waves is <inline-formula><tex-math notation="LaTeX">99\%</tex-math></inline-formula>, when compared to the noncausal complex conjugate.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2019.2958018</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absorption ; Conjugates ; Control systems ; Controllers ; Converters ; Energy absorption ; energy conversion ; Energy conversion efficiency ; Force ; Frequencies ; identifi-cation ; Impedance ; Impedance matching ; Iron ; Mathematical model ; Ocean waves ; Power efficiency ; resonance ; System identification ; TIDAL AND WAVE POWER ; Transfer functions ; Wave power</subject><ispartof>IEEE transactions on industry applications, 2020-03, Vol.56 (2), p.1862-1868</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-1f703315ccd5f97f0beba71aea834fe4dd9ca18cffcc94c693fea3e8ec60a7613</citedby><cites>FETCH-LOGICAL-c360t-1f703315ccd5f97f0beba71aea834fe4dd9ca18cffcc94c693fea3e8ec60a7613</cites><orcidid>0000-0002-1208-2352 ; 0000-0003-0738-3772 ; 0000000307383772 ; 0000000212082352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8926523$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,54779</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1607499$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bacelli, Giorgio</creatorcontrib><creatorcontrib>Nevarez, Victor</creatorcontrib><creatorcontrib>G. Coe, Ryan</creatorcontrib><creatorcontrib>G. Wilson, David</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Feedback Resonating Control for a Wave Energy Converter</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Through the use of advanced control techniques, wave energy converters (WECs) can achieve substantial increases in energy absorption. The motion of the WEC device is a significant contribution to the energy absorbed by the device. Reactive (complex conjugate) control maximizes the energy absorption due to the impedance matching. The issue with complex conjugate control is that, in general, the controller is noncausal, which requires prediction of the incoming waves. This article explores the potential of employing system identification techniques to build a causal transfer function that approximates the complex conjugate controller over a finite frequency band of interest. This approach is quite viable given the band-limited nature of ocean waves. The resulting controller is stable, and the average efficiency of the power captured by the causal controller in realistic ocean waves is <inline-formula><tex-math notation="LaTeX">99\%</tex-math></inline-formula>, when compared to the noncausal complex conjugate.</description><subject>Absorption</subject><subject>Conjugates</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Converters</subject><subject>Energy absorption</subject><subject>energy conversion</subject><subject>Energy conversion efficiency</subject><subject>Force</subject><subject>Frequencies</subject><subject>identifi-cation</subject><subject>Impedance</subject><subject>Impedance matching</subject><subject>Iron</subject><subject>Mathematical model</subject><subject>Ocean waves</subject><subject>Power efficiency</subject><subject>resonance</subject><subject>System identification</subject><subject>TIDAL AND WAVE POWER</subject><subject>Transfer functions</subject><subject>Wave power</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAUxoMoOKd3wUvRc-dL0zZ9xzE2HQwEmXgMWfoyO2czk2yw_96ODk_v8P2-j8ePsXsOI84Bn5fz8SgDjqMMiwp4dcEGHAWmKEp5yQYAKFJEzK_ZTQgbAJ4XPB8wOSOqV9p8J-8UXKtj066TiWujd9vEOp_o5FMfKJm25NfHU3IgH8nfsiurt4HuznfIPmbT5eQ1Xby9zCfjRWpECTHlVoIQvDCmLixKCytaack16UrklvK6RqN5Zaw1BnNTorCkBVVkStCy5GLIHvtdF2KjgmkimS_j2pZMVLwEmSN20FMP7bz73VOIauP2vu3-UpmQUhSyAtlR0FPGuxA8WbXzzY_2R8VBnRyqzqE6OVRnh13loa80RPSPV5iVRSbEH0NdbHA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Bacelli, Giorgio</creator><creator>Nevarez, Victor</creator><creator>G. Coe, Ryan</creator><creator>G. Wilson, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1208-2352</orcidid><orcidid>https://orcid.org/0000-0003-0738-3772</orcidid><orcidid>https://orcid.org/0000000307383772</orcidid><orcidid>https://orcid.org/0000000212082352</orcidid></search><sort><creationdate>20200301</creationdate><title>Feedback Resonating Control for a Wave Energy Converter</title><author>Bacelli, Giorgio ; Nevarez, Victor ; G. Coe, Ryan ; G. Wilson, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-1f703315ccd5f97f0beba71aea834fe4dd9ca18cffcc94c693fea3e8ec60a7613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Conjugates</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Converters</topic><topic>Energy absorption</topic><topic>energy conversion</topic><topic>Energy conversion efficiency</topic><topic>Force</topic><topic>Frequencies</topic><topic>identifi-cation</topic><topic>Impedance</topic><topic>Impedance matching</topic><topic>Iron</topic><topic>Mathematical model</topic><topic>Ocean waves</topic><topic>Power efficiency</topic><topic>resonance</topic><topic>System identification</topic><topic>TIDAL AND WAVE POWER</topic><topic>Transfer functions</topic><topic>Wave power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bacelli, Giorgio</creatorcontrib><creatorcontrib>Nevarez, Victor</creatorcontrib><creatorcontrib>G. Coe, Ryan</creatorcontrib><creatorcontrib>G. Wilson, David</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bacelli, Giorgio</au><au>Nevarez, Victor</au><au>G. Coe, Ryan</au><au>G. Wilson, David</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feedback Resonating Control for a Wave Energy Converter</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>56</volume><issue>2</issue><spage>1862</spage><epage>1868</epage><pages>1862-1868</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Through the use of advanced control techniques, wave energy converters (WECs) can achieve substantial increases in energy absorption. The motion of the WEC device is a significant contribution to the energy absorbed by the device. Reactive (complex conjugate) control maximizes the energy absorption due to the impedance matching. The issue with complex conjugate control is that, in general, the controller is noncausal, which requires prediction of the incoming waves. This article explores the potential of employing system identification techniques to build a causal transfer function that approximates the complex conjugate controller over a finite frequency band of interest. This approach is quite viable given the band-limited nature of ocean waves. The resulting controller is stable, and the average efficiency of the power captured by the causal controller in realistic ocean waves is <inline-formula><tex-math notation="LaTeX">99\%</tex-math></inline-formula>, when compared to the noncausal complex conjugate.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2019.2958018</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1208-2352</orcidid><orcidid>https://orcid.org/0000-0003-0738-3772</orcidid><orcidid>https://orcid.org/0000000307383772</orcidid><orcidid>https://orcid.org/0000000212082352</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2020-03, Vol.56 (2), p.1862-1868 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_ieee_primary_8926523 |
source | IEEE Xplore (Online service) |
subjects | Absorption Conjugates Control systems Controllers Converters Energy absorption energy conversion Energy conversion efficiency Force Frequencies identifi-cation Impedance Impedance matching Iron Mathematical model Ocean waves Power efficiency resonance System identification TIDAL AND WAVE POWER Transfer functions Wave power |
title | Feedback Resonating Control for a Wave Energy Converter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feedback%20Resonating%20Control%20for%20a%20Wave%20Energy%20Converter&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Bacelli,%20Giorgio&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2020-03-01&rft.volume=56&rft.issue=2&rft.spage=1862&rft.epage=1868&rft.pages=1862-1868&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2019.2958018&rft_dat=%3Cproquest_ieee_%3E2377357807%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-1f703315ccd5f97f0beba71aea834fe4dd9ca18cffcc94c693fea3e8ec60a7613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2377357807&rft_id=info:pmid/&rft_ieee_id=8926523&rfr_iscdi=true |