Loading…

Feedback Resonating Control for a Wave Energy Converter

Through the use of advanced control techniques, wave energy converters (WECs) can achieve substantial increases in energy absorption. The motion of the WEC device is a significant contribution to the energy absorbed by the device. Reactive (complex conjugate) control maximizes the energy absorption...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industry applications 2020-03, Vol.56 (2), p.1862-1868
Main Authors: Bacelli, Giorgio, Nevarez, Victor, G. Coe, Ryan, G. Wilson, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c360t-1f703315ccd5f97f0beba71aea834fe4dd9ca18cffcc94c693fea3e8ec60a7613
cites cdi_FETCH-LOGICAL-c360t-1f703315ccd5f97f0beba71aea834fe4dd9ca18cffcc94c693fea3e8ec60a7613
container_end_page 1868
container_issue 2
container_start_page 1862
container_title IEEE transactions on industry applications
container_volume 56
creator Bacelli, Giorgio
Nevarez, Victor
G. Coe, Ryan
G. Wilson, David
description Through the use of advanced control techniques, wave energy converters (WECs) can achieve substantial increases in energy absorption. The motion of the WEC device is a significant contribution to the energy absorbed by the device. Reactive (complex conjugate) control maximizes the energy absorption due to the impedance matching. The issue with complex conjugate control is that, in general, the controller is noncausal, which requires prediction of the incoming waves. This article explores the potential of employing system identification techniques to build a causal transfer function that approximates the complex conjugate controller over a finite frequency band of interest. This approach is quite viable given the band-limited nature of ocean waves. The resulting controller is stable, and the average efficiency of the power captured by the causal controller in realistic ocean waves is 99\%, when compared to the noncausal complex conjugate.
doi_str_mv 10.1109/TIA.2019.2958018
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8926523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8926523</ieee_id><sourcerecordid>2377357807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-1f703315ccd5f97f0beba71aea834fe4dd9ca18cffcc94c693fea3e8ec60a7613</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvRc-dL0zZ9xzE2HQwEmXgMWfoyO2czk2yw_96ODk_v8P2-j8ePsXsOI84Bn5fz8SgDjqMMiwp4dcEGHAWmKEp5yQYAKFJEzK_ZTQgbAJ4XPB8wOSOqV9p8J-8UXKtj066TiWujd9vEOp_o5FMfKJm25NfHU3IgH8nfsiurt4HuznfIPmbT5eQ1Xby9zCfjRWpECTHlVoIQvDCmLixKCytaack16UrklvK6RqN5Zaw1BnNTorCkBVVkStCy5GLIHvtdF2KjgmkimS_j2pZMVLwEmSN20FMP7bz73VOIauP2vu3-UpmQUhSyAtlR0FPGuxA8WbXzzY_2R8VBnRyqzqE6OVRnh13loa80RPSPV5iVRSbEH0NdbHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377357807</pqid></control><display><type>article</type><title>Feedback Resonating Control for a Wave Energy Converter</title><source>IEEE Xplore (Online service)</source><creator>Bacelli, Giorgio ; Nevarez, Victor ; G. Coe, Ryan ; G. Wilson, David</creator><creatorcontrib>Bacelli, Giorgio ; Nevarez, Victor ; G. Coe, Ryan ; G. Wilson, David ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Through the use of advanced control techniques, wave energy converters (WECs) can achieve substantial increases in energy absorption. The motion of the WEC device is a significant contribution to the energy absorbed by the device. Reactive (complex conjugate) control maximizes the energy absorption due to the impedance matching. The issue with complex conjugate control is that, in general, the controller is noncausal, which requires prediction of the incoming waves. This article explores the potential of employing system identification techniques to build a causal transfer function that approximates the complex conjugate controller over a finite frequency band of interest. This approach is quite viable given the band-limited nature of ocean waves. The resulting controller is stable, and the average efficiency of the power captured by the causal controller in realistic ocean waves is &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;99\%&lt;/tex-math&gt;&lt;/inline-formula&gt;, when compared to the noncausal complex conjugate.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2019.2958018</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absorption ; Conjugates ; Control systems ; Controllers ; Converters ; Energy absorption ; energy conversion ; Energy conversion efficiency ; Force ; Frequencies ; identifi-cation ; Impedance ; Impedance matching ; Iron ; Mathematical model ; Ocean waves ; Power efficiency ; resonance ; System identification ; TIDAL AND WAVE POWER ; Transfer functions ; Wave power</subject><ispartof>IEEE transactions on industry applications, 2020-03, Vol.56 (2), p.1862-1868</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-1f703315ccd5f97f0beba71aea834fe4dd9ca18cffcc94c693fea3e8ec60a7613</citedby><cites>FETCH-LOGICAL-c360t-1f703315ccd5f97f0beba71aea834fe4dd9ca18cffcc94c693fea3e8ec60a7613</cites><orcidid>0000-0002-1208-2352 ; 0000-0003-0738-3772 ; 0000000307383772 ; 0000000212082352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8926523$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,54779</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1607499$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bacelli, Giorgio</creatorcontrib><creatorcontrib>Nevarez, Victor</creatorcontrib><creatorcontrib>G. Coe, Ryan</creatorcontrib><creatorcontrib>G. Wilson, David</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Feedback Resonating Control for a Wave Energy Converter</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Through the use of advanced control techniques, wave energy converters (WECs) can achieve substantial increases in energy absorption. The motion of the WEC device is a significant contribution to the energy absorbed by the device. Reactive (complex conjugate) control maximizes the energy absorption due to the impedance matching. The issue with complex conjugate control is that, in general, the controller is noncausal, which requires prediction of the incoming waves. This article explores the potential of employing system identification techniques to build a causal transfer function that approximates the complex conjugate controller over a finite frequency band of interest. This approach is quite viable given the band-limited nature of ocean waves. The resulting controller is stable, and the average efficiency of the power captured by the causal controller in realistic ocean waves is &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;99\%&lt;/tex-math&gt;&lt;/inline-formula&gt;, when compared to the noncausal complex conjugate.</description><subject>Absorption</subject><subject>Conjugates</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Converters</subject><subject>Energy absorption</subject><subject>energy conversion</subject><subject>Energy conversion efficiency</subject><subject>Force</subject><subject>Frequencies</subject><subject>identifi-cation</subject><subject>Impedance</subject><subject>Impedance matching</subject><subject>Iron</subject><subject>Mathematical model</subject><subject>Ocean waves</subject><subject>Power efficiency</subject><subject>resonance</subject><subject>System identification</subject><subject>TIDAL AND WAVE POWER</subject><subject>Transfer functions</subject><subject>Wave power</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAUxoMoOKd3wUvRc-dL0zZ9xzE2HQwEmXgMWfoyO2czk2yw_96ODk_v8P2-j8ePsXsOI84Bn5fz8SgDjqMMiwp4dcEGHAWmKEp5yQYAKFJEzK_ZTQgbAJ4XPB8wOSOqV9p8J-8UXKtj066TiWujd9vEOp_o5FMfKJm25NfHU3IgH8nfsiurt4HuznfIPmbT5eQ1Xby9zCfjRWpECTHlVoIQvDCmLixKCytaack16UrklvK6RqN5Zaw1BnNTorCkBVVkStCy5GLIHvtdF2KjgmkimS_j2pZMVLwEmSN20FMP7bz73VOIauP2vu3-UpmQUhSyAtlR0FPGuxA8WbXzzY_2R8VBnRyqzqE6OVRnh13loa80RPSPV5iVRSbEH0NdbHA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Bacelli, Giorgio</creator><creator>Nevarez, Victor</creator><creator>G. Coe, Ryan</creator><creator>G. Wilson, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1208-2352</orcidid><orcidid>https://orcid.org/0000-0003-0738-3772</orcidid><orcidid>https://orcid.org/0000000307383772</orcidid><orcidid>https://orcid.org/0000000212082352</orcidid></search><sort><creationdate>20200301</creationdate><title>Feedback Resonating Control for a Wave Energy Converter</title><author>Bacelli, Giorgio ; Nevarez, Victor ; G. Coe, Ryan ; G. Wilson, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-1f703315ccd5f97f0beba71aea834fe4dd9ca18cffcc94c693fea3e8ec60a7613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Conjugates</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Converters</topic><topic>Energy absorption</topic><topic>energy conversion</topic><topic>Energy conversion efficiency</topic><topic>Force</topic><topic>Frequencies</topic><topic>identifi-cation</topic><topic>Impedance</topic><topic>Impedance matching</topic><topic>Iron</topic><topic>Mathematical model</topic><topic>Ocean waves</topic><topic>Power efficiency</topic><topic>resonance</topic><topic>System identification</topic><topic>TIDAL AND WAVE POWER</topic><topic>Transfer functions</topic><topic>Wave power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bacelli, Giorgio</creatorcontrib><creatorcontrib>Nevarez, Victor</creatorcontrib><creatorcontrib>G. Coe, Ryan</creatorcontrib><creatorcontrib>G. Wilson, David</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bacelli, Giorgio</au><au>Nevarez, Victor</au><au>G. Coe, Ryan</au><au>G. Wilson, David</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feedback Resonating Control for a Wave Energy Converter</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>56</volume><issue>2</issue><spage>1862</spage><epage>1868</epage><pages>1862-1868</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Through the use of advanced control techniques, wave energy converters (WECs) can achieve substantial increases in energy absorption. The motion of the WEC device is a significant contribution to the energy absorbed by the device. Reactive (complex conjugate) control maximizes the energy absorption due to the impedance matching. The issue with complex conjugate control is that, in general, the controller is noncausal, which requires prediction of the incoming waves. This article explores the potential of employing system identification techniques to build a causal transfer function that approximates the complex conjugate controller over a finite frequency band of interest. This approach is quite viable given the band-limited nature of ocean waves. The resulting controller is stable, and the average efficiency of the power captured by the causal controller in realistic ocean waves is &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;99\%&lt;/tex-math&gt;&lt;/inline-formula&gt;, when compared to the noncausal complex conjugate.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2019.2958018</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1208-2352</orcidid><orcidid>https://orcid.org/0000-0003-0738-3772</orcidid><orcidid>https://orcid.org/0000000307383772</orcidid><orcidid>https://orcid.org/0000000212082352</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2020-03, Vol.56 (2), p.1862-1868
issn 0093-9994
1939-9367
language eng
recordid cdi_ieee_primary_8926523
source IEEE Xplore (Online service)
subjects Absorption
Conjugates
Control systems
Controllers
Converters
Energy absorption
energy conversion
Energy conversion efficiency
Force
Frequencies
identifi-cation
Impedance
Impedance matching
Iron
Mathematical model
Ocean waves
Power efficiency
resonance
System identification
TIDAL AND WAVE POWER
Transfer functions
Wave power
title Feedback Resonating Control for a Wave Energy Converter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feedback%20Resonating%20Control%20for%20a%20Wave%20Energy%20Converter&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Bacelli,%20Giorgio&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2020-03-01&rft.volume=56&rft.issue=2&rft.spage=1862&rft.epage=1868&rft.pages=1862-1868&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2019.2958018&rft_dat=%3Cproquest_ieee_%3E2377357807%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-1f703315ccd5f97f0beba71aea834fe4dd9ca18cffcc94c693fea3e8ec60a7613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2377357807&rft_id=info:pmid/&rft_ieee_id=8926523&rfr_iscdi=true