Loading…

Fully-Integrated Heterogeneous DML Transmitters for High-Performance Computing

Optical connectivity, which has been widely deployed in today's datacenters and high-performance computing (HPC) systems, is a disruptive technological revolution to the IT industry in the new Millennium. In our journey to debut an Exascale supercomputer, a completely new computing concept, cal...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 2020-07, Vol.38 (13), p.3322-3337
Main Authors: Liang, Di, Roshan-Zamir, Ashkan, Fan, Yang-Hang, Zhang, Chong, Wang, Binhao, Descos, Antoine, Shen, Wenqing, Yu, Kunzhi, Li, Cheng, Fan, Gaofeng, Kurczveil, Geza, Hu, Yingtao, Huang, Zhihong, Fiorentino, Marco, Kumar, Satish, Palermo, Samuel M., Beausoleil, Raymond G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-b12da05e022b55aaca9433026ccb213dd670d65109ff4c71a2b5c26b597239f13
cites cdi_FETCH-LOGICAL-c333t-b12da05e022b55aaca9433026ccb213dd670d65109ff4c71a2b5c26b597239f13
container_end_page 3337
container_issue 13
container_start_page 3322
container_title Journal of lightwave technology
container_volume 38
creator Liang, Di
Roshan-Zamir, Ashkan
Fan, Yang-Hang
Zhang, Chong
Wang, Binhao
Descos, Antoine
Shen, Wenqing
Yu, Kunzhi
Li, Cheng
Fan, Gaofeng
Kurczveil, Geza
Hu, Yingtao
Huang, Zhihong
Fiorentino, Marco
Kumar, Satish
Palermo, Samuel M.
Beausoleil, Raymond G.
description Optical connectivity, which has been widely deployed in today's datacenters and high-performance computing (HPC) systems, is a disruptive technological revolution to the IT industry in the new Millennium. In our journey to debut an Exascale supercomputer, a completely new computing concept, called memory-driven computing, was innovated recently. This new computing architecture brings challenges and opportunities for novel optical interconnect solutions. Here, we first discuss our strategy to develop appropriate optical link solutions for different data traffic scenarios in memory-driven HPCs. Then, we present detailed review on recent work to demonstrate fully photonics-electronics-integrated single- and multi-wavelength directly modulated laser (DML) transmitters on silicon for the first time. Compact heterogeneous microring lasers and laser arrays were fabricated as photonic engines to work with a customized complementary metal-oxide semiconductor (CMOS) driver circuit. Microring lasers based on conventional quantum well and new quantum dot lasing medium were compared in the experiment. Thermal shunt and MOS capacitor structures were integrated into the lasers for effective thermal management and ultra low-energy tuning. It enables a controllable dense wavelength division multiplexing (DWDM) link architecture in an HPC environment. An equivalent microring laser circuit model was constructed to allow photonics-electronics co-simulation. Equalization functionality in the CMOS driver circuit proved to be critical to achieve up to 14 Gb/s direct modulation with 6 dB extinction ratio. Finally, the on-going and future work is discussed towards more robust, higher speed, and more energy efficient DML transmitters.
doi_str_mv 10.1109/JLT.2019.2959048
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8937048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8937048</ieee_id><sourcerecordid>2424546252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-b12da05e022b55aaca9433026ccb213dd670d65109ff4c71a2b5c26b597239f13</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqWwI7FEYk6xz3YSj6hQWhQ-hjJbjnMJqZqk2MnQf19XrZjudPe89_EScs_ojDGqnt7z9QwoUzNQUlGRXZAJkzKLARi_JBOach5nKYhrcuP9hlImRJZOyOdi3G738aobsHZmwDJa4oCur7HDfvTRy0cerZ3pfNsMoe6jqnfRsql_4290IW9NZzGa9-1uHJquviVXldl6vDvHKflZvK7nyzj_elvNn_PYcs6HuGBQGiqRAhRSGmONEpxTSKwtwr1lmaS0TGT4q6qETZkJmIWkkCoFrirGp-TxNHfn-r8R_aA3_ei6sFKDACFFAhICRU-Udb33Diu9c01r3F4zqo-u6eCaPrqmz64FycNJ0iDiP54pnh67B37naCE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424546252</pqid></control><display><type>article</type><title>Fully-Integrated Heterogeneous DML Transmitters for High-Performance Computing</title><source>IEEE Xplore (Online service)</source><creator>Liang, Di ; Roshan-Zamir, Ashkan ; Fan, Yang-Hang ; Zhang, Chong ; Wang, Binhao ; Descos, Antoine ; Shen, Wenqing ; Yu, Kunzhi ; Li, Cheng ; Fan, Gaofeng ; Kurczveil, Geza ; Hu, Yingtao ; Huang, Zhihong ; Fiorentino, Marco ; Kumar, Satish ; Palermo, Samuel M. ; Beausoleil, Raymond G.</creator><creatorcontrib>Liang, Di ; Roshan-Zamir, Ashkan ; Fan, Yang-Hang ; Zhang, Chong ; Wang, Binhao ; Descos, Antoine ; Shen, Wenqing ; Yu, Kunzhi ; Li, Cheng ; Fan, Gaofeng ; Kurczveil, Geza ; Hu, Yingtao ; Huang, Zhihong ; Fiorentino, Marco ; Kumar, Satish ; Palermo, Samuel M. ; Beausoleil, Raymond G.</creatorcontrib><description>Optical connectivity, which has been widely deployed in today's datacenters and high-performance computing (HPC) systems, is a disruptive technological revolution to the IT industry in the new Millennium. In our journey to debut an Exascale supercomputer, a completely new computing concept, called memory-driven computing, was innovated recently. This new computing architecture brings challenges and opportunities for novel optical interconnect solutions. Here, we first discuss our strategy to develop appropriate optical link solutions for different data traffic scenarios in memory-driven HPCs. Then, we present detailed review on recent work to demonstrate fully photonics-electronics-integrated single- and multi-wavelength directly modulated laser (DML) transmitters on silicon for the first time. Compact heterogeneous microring lasers and laser arrays were fabricated as photonic engines to work with a customized complementary metal-oxide semiconductor (CMOS) driver circuit. Microring lasers based on conventional quantum well and new quantum dot lasing medium were compared in the experiment. Thermal shunt and MOS capacitor structures were integrated into the lasers for effective thermal management and ultra low-energy tuning. It enables a controllable dense wavelength division multiplexing (DWDM) link architecture in an HPC environment. An equivalent microring laser circuit model was constructed to allow photonics-electronics co-simulation. Equalization functionality in the CMOS driver circuit proved to be critical to achieve up to 14 Gb/s direct modulation with 6 dB extinction ratio. Finally, the on-going and future work is discussed towards more robust, higher speed, and more energy efficient DML transmitters.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2019.2959048</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CMOS ; CMOS integrated circuits ; Computation ; Computer architecture ; Computer simulation ; Data centers ; Dense Wavelength Division Multiplexing ; diode lasers ; Driver circuits ; Electronics ; Equalization ; High performance computing ; Laser arrays ; Lasers ; Optical interconnects ; Optical transmitters ; Photonics ; Quantum dot lasers ; Quantum dots ; Quantum wells ; Silicon ; silicon photonics ; Thermal management ; Transmitters ; wafer bonding ; Wavelength division multiplexing</subject><ispartof>Journal of lightwave technology, 2020-07, Vol.38 (13), p.3322-3337</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-b12da05e022b55aaca9433026ccb213dd670d65109ff4c71a2b5c26b597239f13</citedby><cites>FETCH-LOGICAL-c333t-b12da05e022b55aaca9433026ccb213dd670d65109ff4c71a2b5c26b597239f13</cites><orcidid>0000-0003-1366-0115 ; 0000-0002-4040-8444 ; 0000-0003-1373-6087 ; 0000-0002-6555-1474 ; 0000-0001-8867-3098 ; 0000-0003-0200-4905 ; 0000-0001-9701-8378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8937048$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Liang, Di</creatorcontrib><creatorcontrib>Roshan-Zamir, Ashkan</creatorcontrib><creatorcontrib>Fan, Yang-Hang</creatorcontrib><creatorcontrib>Zhang, Chong</creatorcontrib><creatorcontrib>Wang, Binhao</creatorcontrib><creatorcontrib>Descos, Antoine</creatorcontrib><creatorcontrib>Shen, Wenqing</creatorcontrib><creatorcontrib>Yu, Kunzhi</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Fan, Gaofeng</creatorcontrib><creatorcontrib>Kurczveil, Geza</creatorcontrib><creatorcontrib>Hu, Yingtao</creatorcontrib><creatorcontrib>Huang, Zhihong</creatorcontrib><creatorcontrib>Fiorentino, Marco</creatorcontrib><creatorcontrib>Kumar, Satish</creatorcontrib><creatorcontrib>Palermo, Samuel M.</creatorcontrib><creatorcontrib>Beausoleil, Raymond G.</creatorcontrib><title>Fully-Integrated Heterogeneous DML Transmitters for High-Performance Computing</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Optical connectivity, which has been widely deployed in today's datacenters and high-performance computing (HPC) systems, is a disruptive technological revolution to the IT industry in the new Millennium. In our journey to debut an Exascale supercomputer, a completely new computing concept, called memory-driven computing, was innovated recently. This new computing architecture brings challenges and opportunities for novel optical interconnect solutions. Here, we first discuss our strategy to develop appropriate optical link solutions for different data traffic scenarios in memory-driven HPCs. Then, we present detailed review on recent work to demonstrate fully photonics-electronics-integrated single- and multi-wavelength directly modulated laser (DML) transmitters on silicon for the first time. Compact heterogeneous microring lasers and laser arrays were fabricated as photonic engines to work with a customized complementary metal-oxide semiconductor (CMOS) driver circuit. Microring lasers based on conventional quantum well and new quantum dot lasing medium were compared in the experiment. Thermal shunt and MOS capacitor structures were integrated into the lasers for effective thermal management and ultra low-energy tuning. It enables a controllable dense wavelength division multiplexing (DWDM) link architecture in an HPC environment. An equivalent microring laser circuit model was constructed to allow photonics-electronics co-simulation. Equalization functionality in the CMOS driver circuit proved to be critical to achieve up to 14 Gb/s direct modulation with 6 dB extinction ratio. Finally, the on-going and future work is discussed towards more robust, higher speed, and more energy efficient DML transmitters.</description><subject>CMOS</subject><subject>CMOS integrated circuits</subject><subject>Computation</subject><subject>Computer architecture</subject><subject>Computer simulation</subject><subject>Data centers</subject><subject>Dense Wavelength Division Multiplexing</subject><subject>diode lasers</subject><subject>Driver circuits</subject><subject>Electronics</subject><subject>Equalization</subject><subject>High performance computing</subject><subject>Laser arrays</subject><subject>Lasers</subject><subject>Optical interconnects</subject><subject>Optical transmitters</subject><subject>Photonics</subject><subject>Quantum dot lasers</subject><subject>Quantum dots</subject><subject>Quantum wells</subject><subject>Silicon</subject><subject>silicon photonics</subject><subject>Thermal management</subject><subject>Transmitters</subject><subject>wafer bonding</subject><subject>Wavelength division multiplexing</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kD1PwzAQhi0EEqWwI7FEYk6xz3YSj6hQWhQ-hjJbjnMJqZqk2MnQf19XrZjudPe89_EScs_ojDGqnt7z9QwoUzNQUlGRXZAJkzKLARi_JBOach5nKYhrcuP9hlImRJZOyOdi3G738aobsHZmwDJa4oCur7HDfvTRy0cerZ3pfNsMoe6jqnfRsql_4290IW9NZzGa9-1uHJquviVXldl6vDvHKflZvK7nyzj_elvNn_PYcs6HuGBQGiqRAhRSGmONEpxTSKwtwr1lmaS0TGT4q6qETZkJmIWkkCoFrirGp-TxNHfn-r8R_aA3_ei6sFKDACFFAhICRU-Udb33Diu9c01r3F4zqo-u6eCaPrqmz64FycNJ0iDiP54pnh67B37naCE</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Liang, Di</creator><creator>Roshan-Zamir, Ashkan</creator><creator>Fan, Yang-Hang</creator><creator>Zhang, Chong</creator><creator>Wang, Binhao</creator><creator>Descos, Antoine</creator><creator>Shen, Wenqing</creator><creator>Yu, Kunzhi</creator><creator>Li, Cheng</creator><creator>Fan, Gaofeng</creator><creator>Kurczveil, Geza</creator><creator>Hu, Yingtao</creator><creator>Huang, Zhihong</creator><creator>Fiorentino, Marco</creator><creator>Kumar, Satish</creator><creator>Palermo, Samuel M.</creator><creator>Beausoleil, Raymond G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1366-0115</orcidid><orcidid>https://orcid.org/0000-0002-4040-8444</orcidid><orcidid>https://orcid.org/0000-0003-1373-6087</orcidid><orcidid>https://orcid.org/0000-0002-6555-1474</orcidid><orcidid>https://orcid.org/0000-0001-8867-3098</orcidid><orcidid>https://orcid.org/0000-0003-0200-4905</orcidid><orcidid>https://orcid.org/0000-0001-9701-8378</orcidid></search><sort><creationdate>20200701</creationdate><title>Fully-Integrated Heterogeneous DML Transmitters for High-Performance Computing</title><author>Liang, Di ; Roshan-Zamir, Ashkan ; Fan, Yang-Hang ; Zhang, Chong ; Wang, Binhao ; Descos, Antoine ; Shen, Wenqing ; Yu, Kunzhi ; Li, Cheng ; Fan, Gaofeng ; Kurczveil, Geza ; Hu, Yingtao ; Huang, Zhihong ; Fiorentino, Marco ; Kumar, Satish ; Palermo, Samuel M. ; Beausoleil, Raymond G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-b12da05e022b55aaca9433026ccb213dd670d65109ff4c71a2b5c26b597239f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CMOS</topic><topic>CMOS integrated circuits</topic><topic>Computation</topic><topic>Computer architecture</topic><topic>Computer simulation</topic><topic>Data centers</topic><topic>Dense Wavelength Division Multiplexing</topic><topic>diode lasers</topic><topic>Driver circuits</topic><topic>Electronics</topic><topic>Equalization</topic><topic>High performance computing</topic><topic>Laser arrays</topic><topic>Lasers</topic><topic>Optical interconnects</topic><topic>Optical transmitters</topic><topic>Photonics</topic><topic>Quantum dot lasers</topic><topic>Quantum dots</topic><topic>Quantum wells</topic><topic>Silicon</topic><topic>silicon photonics</topic><topic>Thermal management</topic><topic>Transmitters</topic><topic>wafer bonding</topic><topic>Wavelength division multiplexing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Di</creatorcontrib><creatorcontrib>Roshan-Zamir, Ashkan</creatorcontrib><creatorcontrib>Fan, Yang-Hang</creatorcontrib><creatorcontrib>Zhang, Chong</creatorcontrib><creatorcontrib>Wang, Binhao</creatorcontrib><creatorcontrib>Descos, Antoine</creatorcontrib><creatorcontrib>Shen, Wenqing</creatorcontrib><creatorcontrib>Yu, Kunzhi</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Fan, Gaofeng</creatorcontrib><creatorcontrib>Kurczveil, Geza</creatorcontrib><creatorcontrib>Hu, Yingtao</creatorcontrib><creatorcontrib>Huang, Zhihong</creatorcontrib><creatorcontrib>Fiorentino, Marco</creatorcontrib><creatorcontrib>Kumar, Satish</creatorcontrib><creatorcontrib>Palermo, Samuel M.</creatorcontrib><creatorcontrib>Beausoleil, Raymond G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Di</au><au>Roshan-Zamir, Ashkan</au><au>Fan, Yang-Hang</au><au>Zhang, Chong</au><au>Wang, Binhao</au><au>Descos, Antoine</au><au>Shen, Wenqing</au><au>Yu, Kunzhi</au><au>Li, Cheng</au><au>Fan, Gaofeng</au><au>Kurczveil, Geza</au><au>Hu, Yingtao</au><au>Huang, Zhihong</au><au>Fiorentino, Marco</au><au>Kumar, Satish</au><au>Palermo, Samuel M.</au><au>Beausoleil, Raymond G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully-Integrated Heterogeneous DML Transmitters for High-Performance Computing</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>38</volume><issue>13</issue><spage>3322</spage><epage>3337</epage><pages>3322-3337</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Optical connectivity, which has been widely deployed in today's datacenters and high-performance computing (HPC) systems, is a disruptive technological revolution to the IT industry in the new Millennium. In our journey to debut an Exascale supercomputer, a completely new computing concept, called memory-driven computing, was innovated recently. This new computing architecture brings challenges and opportunities for novel optical interconnect solutions. Here, we first discuss our strategy to develop appropriate optical link solutions for different data traffic scenarios in memory-driven HPCs. Then, we present detailed review on recent work to demonstrate fully photonics-electronics-integrated single- and multi-wavelength directly modulated laser (DML) transmitters on silicon for the first time. Compact heterogeneous microring lasers and laser arrays were fabricated as photonic engines to work with a customized complementary metal-oxide semiconductor (CMOS) driver circuit. Microring lasers based on conventional quantum well and new quantum dot lasing medium were compared in the experiment. Thermal shunt and MOS capacitor structures were integrated into the lasers for effective thermal management and ultra low-energy tuning. It enables a controllable dense wavelength division multiplexing (DWDM) link architecture in an HPC environment. An equivalent microring laser circuit model was constructed to allow photonics-electronics co-simulation. Equalization functionality in the CMOS driver circuit proved to be critical to achieve up to 14 Gb/s direct modulation with 6 dB extinction ratio. Finally, the on-going and future work is discussed towards more robust, higher speed, and more energy efficient DML transmitters.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2019.2959048</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1366-0115</orcidid><orcidid>https://orcid.org/0000-0002-4040-8444</orcidid><orcidid>https://orcid.org/0000-0003-1373-6087</orcidid><orcidid>https://orcid.org/0000-0002-6555-1474</orcidid><orcidid>https://orcid.org/0000-0001-8867-3098</orcidid><orcidid>https://orcid.org/0000-0003-0200-4905</orcidid><orcidid>https://orcid.org/0000-0001-9701-8378</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2020-07, Vol.38 (13), p.3322-3337
issn 0733-8724
1558-2213
language eng
recordid cdi_ieee_primary_8937048
source IEEE Xplore (Online service)
subjects CMOS
CMOS integrated circuits
Computation
Computer architecture
Computer simulation
Data centers
Dense Wavelength Division Multiplexing
diode lasers
Driver circuits
Electronics
Equalization
High performance computing
Laser arrays
Lasers
Optical interconnects
Optical transmitters
Photonics
Quantum dot lasers
Quantum dots
Quantum wells
Silicon
silicon photonics
Thermal management
Transmitters
wafer bonding
Wavelength division multiplexing
title Fully-Integrated Heterogeneous DML Transmitters for High-Performance Computing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully-Integrated%20Heterogeneous%20DML%20Transmitters%20for%20High-Performance%20Computing&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Liang,%20Di&rft.date=2020-07-01&rft.volume=38&rft.issue=13&rft.spage=3322&rft.epage=3337&rft.pages=3322-3337&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2019.2959048&rft_dat=%3Cproquest_ieee_%3E2424546252%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-b12da05e022b55aaca9433026ccb213dd670d65109ff4c71a2b5c26b597239f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2424546252&rft_id=info:pmid/&rft_ieee_id=8937048&rfr_iscdi=true