Loading…
Fully-Integrated Heterogeneous DML Transmitters for High-Performance Computing
Optical connectivity, which has been widely deployed in today's datacenters and high-performance computing (HPC) systems, is a disruptive technological revolution to the IT industry in the new Millennium. In our journey to debut an Exascale supercomputer, a completely new computing concept, cal...
Saved in:
Published in: | Journal of lightwave technology 2020-07, Vol.38 (13), p.3322-3337 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-b12da05e022b55aaca9433026ccb213dd670d65109ff4c71a2b5c26b597239f13 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-b12da05e022b55aaca9433026ccb213dd670d65109ff4c71a2b5c26b597239f13 |
container_end_page | 3337 |
container_issue | 13 |
container_start_page | 3322 |
container_title | Journal of lightwave technology |
container_volume | 38 |
creator | Liang, Di Roshan-Zamir, Ashkan Fan, Yang-Hang Zhang, Chong Wang, Binhao Descos, Antoine Shen, Wenqing Yu, Kunzhi Li, Cheng Fan, Gaofeng Kurczveil, Geza Hu, Yingtao Huang, Zhihong Fiorentino, Marco Kumar, Satish Palermo, Samuel M. Beausoleil, Raymond G. |
description | Optical connectivity, which has been widely deployed in today's datacenters and high-performance computing (HPC) systems, is a disruptive technological revolution to the IT industry in the new Millennium. In our journey to debut an Exascale supercomputer, a completely new computing concept, called memory-driven computing, was innovated recently. This new computing architecture brings challenges and opportunities for novel optical interconnect solutions. Here, we first discuss our strategy to develop appropriate optical link solutions for different data traffic scenarios in memory-driven HPCs. Then, we present detailed review on recent work to demonstrate fully photonics-electronics-integrated single- and multi-wavelength directly modulated laser (DML) transmitters on silicon for the first time. Compact heterogeneous microring lasers and laser arrays were fabricated as photonic engines to work with a customized complementary metal-oxide semiconductor (CMOS) driver circuit. Microring lasers based on conventional quantum well and new quantum dot lasing medium were compared in the experiment. Thermal shunt and MOS capacitor structures were integrated into the lasers for effective thermal management and ultra low-energy tuning. It enables a controllable dense wavelength division multiplexing (DWDM) link architecture in an HPC environment. An equivalent microring laser circuit model was constructed to allow photonics-electronics co-simulation. Equalization functionality in the CMOS driver circuit proved to be critical to achieve up to 14 Gb/s direct modulation with 6 dB extinction ratio. Finally, the on-going and future work is discussed towards more robust, higher speed, and more energy efficient DML transmitters. |
doi_str_mv | 10.1109/JLT.2019.2959048 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8937048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8937048</ieee_id><sourcerecordid>2424546252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-b12da05e022b55aaca9433026ccb213dd670d65109ff4c71a2b5c26b597239f13</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqWwI7FEYk6xz3YSj6hQWhQ-hjJbjnMJqZqk2MnQf19XrZjudPe89_EScs_ojDGqnt7z9QwoUzNQUlGRXZAJkzKLARi_JBOach5nKYhrcuP9hlImRJZOyOdi3G738aobsHZmwDJa4oCur7HDfvTRy0cerZ3pfNsMoe6jqnfRsql_4290IW9NZzGa9-1uHJquviVXldl6vDvHKflZvK7nyzj_elvNn_PYcs6HuGBQGiqRAhRSGmONEpxTSKwtwr1lmaS0TGT4q6qETZkJmIWkkCoFrirGp-TxNHfn-r8R_aA3_ei6sFKDACFFAhICRU-Udb33Diu9c01r3F4zqo-u6eCaPrqmz64FycNJ0iDiP54pnh67B37naCE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424546252</pqid></control><display><type>article</type><title>Fully-Integrated Heterogeneous DML Transmitters for High-Performance Computing</title><source>IEEE Xplore (Online service)</source><creator>Liang, Di ; Roshan-Zamir, Ashkan ; Fan, Yang-Hang ; Zhang, Chong ; Wang, Binhao ; Descos, Antoine ; Shen, Wenqing ; Yu, Kunzhi ; Li, Cheng ; Fan, Gaofeng ; Kurczveil, Geza ; Hu, Yingtao ; Huang, Zhihong ; Fiorentino, Marco ; Kumar, Satish ; Palermo, Samuel M. ; Beausoleil, Raymond G.</creator><creatorcontrib>Liang, Di ; Roshan-Zamir, Ashkan ; Fan, Yang-Hang ; Zhang, Chong ; Wang, Binhao ; Descos, Antoine ; Shen, Wenqing ; Yu, Kunzhi ; Li, Cheng ; Fan, Gaofeng ; Kurczveil, Geza ; Hu, Yingtao ; Huang, Zhihong ; Fiorentino, Marco ; Kumar, Satish ; Palermo, Samuel M. ; Beausoleil, Raymond G.</creatorcontrib><description>Optical connectivity, which has been widely deployed in today's datacenters and high-performance computing (HPC) systems, is a disruptive technological revolution to the IT industry in the new Millennium. In our journey to debut an Exascale supercomputer, a completely new computing concept, called memory-driven computing, was innovated recently. This new computing architecture brings challenges and opportunities for novel optical interconnect solutions. Here, we first discuss our strategy to develop appropriate optical link solutions for different data traffic scenarios in memory-driven HPCs. Then, we present detailed review on recent work to demonstrate fully photonics-electronics-integrated single- and multi-wavelength directly modulated laser (DML) transmitters on silicon for the first time. Compact heterogeneous microring lasers and laser arrays were fabricated as photonic engines to work with a customized complementary metal-oxide semiconductor (CMOS) driver circuit. Microring lasers based on conventional quantum well and new quantum dot lasing medium were compared in the experiment. Thermal shunt and MOS capacitor structures were integrated into the lasers for effective thermal management and ultra low-energy tuning. It enables a controllable dense wavelength division multiplexing (DWDM) link architecture in an HPC environment. An equivalent microring laser circuit model was constructed to allow photonics-electronics co-simulation. Equalization functionality in the CMOS driver circuit proved to be critical to achieve up to 14 Gb/s direct modulation with 6 dB extinction ratio. Finally, the on-going and future work is discussed towards more robust, higher speed, and more energy efficient DML transmitters.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2019.2959048</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CMOS ; CMOS integrated circuits ; Computation ; Computer architecture ; Computer simulation ; Data centers ; Dense Wavelength Division Multiplexing ; diode lasers ; Driver circuits ; Electronics ; Equalization ; High performance computing ; Laser arrays ; Lasers ; Optical interconnects ; Optical transmitters ; Photonics ; Quantum dot lasers ; Quantum dots ; Quantum wells ; Silicon ; silicon photonics ; Thermal management ; Transmitters ; wafer bonding ; Wavelength division multiplexing</subject><ispartof>Journal of lightwave technology, 2020-07, Vol.38 (13), p.3322-3337</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-b12da05e022b55aaca9433026ccb213dd670d65109ff4c71a2b5c26b597239f13</citedby><cites>FETCH-LOGICAL-c333t-b12da05e022b55aaca9433026ccb213dd670d65109ff4c71a2b5c26b597239f13</cites><orcidid>0000-0003-1366-0115 ; 0000-0002-4040-8444 ; 0000-0003-1373-6087 ; 0000-0002-6555-1474 ; 0000-0001-8867-3098 ; 0000-0003-0200-4905 ; 0000-0001-9701-8378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8937048$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Liang, Di</creatorcontrib><creatorcontrib>Roshan-Zamir, Ashkan</creatorcontrib><creatorcontrib>Fan, Yang-Hang</creatorcontrib><creatorcontrib>Zhang, Chong</creatorcontrib><creatorcontrib>Wang, Binhao</creatorcontrib><creatorcontrib>Descos, Antoine</creatorcontrib><creatorcontrib>Shen, Wenqing</creatorcontrib><creatorcontrib>Yu, Kunzhi</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Fan, Gaofeng</creatorcontrib><creatorcontrib>Kurczveil, Geza</creatorcontrib><creatorcontrib>Hu, Yingtao</creatorcontrib><creatorcontrib>Huang, Zhihong</creatorcontrib><creatorcontrib>Fiorentino, Marco</creatorcontrib><creatorcontrib>Kumar, Satish</creatorcontrib><creatorcontrib>Palermo, Samuel M.</creatorcontrib><creatorcontrib>Beausoleil, Raymond G.</creatorcontrib><title>Fully-Integrated Heterogeneous DML Transmitters for High-Performance Computing</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Optical connectivity, which has been widely deployed in today's datacenters and high-performance computing (HPC) systems, is a disruptive technological revolution to the IT industry in the new Millennium. In our journey to debut an Exascale supercomputer, a completely new computing concept, called memory-driven computing, was innovated recently. This new computing architecture brings challenges and opportunities for novel optical interconnect solutions. Here, we first discuss our strategy to develop appropriate optical link solutions for different data traffic scenarios in memory-driven HPCs. Then, we present detailed review on recent work to demonstrate fully photonics-electronics-integrated single- and multi-wavelength directly modulated laser (DML) transmitters on silicon for the first time. Compact heterogeneous microring lasers and laser arrays were fabricated as photonic engines to work with a customized complementary metal-oxide semiconductor (CMOS) driver circuit. Microring lasers based on conventional quantum well and new quantum dot lasing medium were compared in the experiment. Thermal shunt and MOS capacitor structures were integrated into the lasers for effective thermal management and ultra low-energy tuning. It enables a controllable dense wavelength division multiplexing (DWDM) link architecture in an HPC environment. An equivalent microring laser circuit model was constructed to allow photonics-electronics co-simulation. Equalization functionality in the CMOS driver circuit proved to be critical to achieve up to 14 Gb/s direct modulation with 6 dB extinction ratio. Finally, the on-going and future work is discussed towards more robust, higher speed, and more energy efficient DML transmitters.</description><subject>CMOS</subject><subject>CMOS integrated circuits</subject><subject>Computation</subject><subject>Computer architecture</subject><subject>Computer simulation</subject><subject>Data centers</subject><subject>Dense Wavelength Division Multiplexing</subject><subject>diode lasers</subject><subject>Driver circuits</subject><subject>Electronics</subject><subject>Equalization</subject><subject>High performance computing</subject><subject>Laser arrays</subject><subject>Lasers</subject><subject>Optical interconnects</subject><subject>Optical transmitters</subject><subject>Photonics</subject><subject>Quantum dot lasers</subject><subject>Quantum dots</subject><subject>Quantum wells</subject><subject>Silicon</subject><subject>silicon photonics</subject><subject>Thermal management</subject><subject>Transmitters</subject><subject>wafer bonding</subject><subject>Wavelength division multiplexing</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kD1PwzAQhi0EEqWwI7FEYk6xz3YSj6hQWhQ-hjJbjnMJqZqk2MnQf19XrZjudPe89_EScs_ojDGqnt7z9QwoUzNQUlGRXZAJkzKLARi_JBOach5nKYhrcuP9hlImRJZOyOdi3G738aobsHZmwDJa4oCur7HDfvTRy0cerZ3pfNsMoe6jqnfRsql_4290IW9NZzGa9-1uHJquviVXldl6vDvHKflZvK7nyzj_elvNn_PYcs6HuGBQGiqRAhRSGmONEpxTSKwtwr1lmaS0TGT4q6qETZkJmIWkkCoFrirGp-TxNHfn-r8R_aA3_ei6sFKDACFFAhICRU-Udb33Diu9c01r3F4zqo-u6eCaPrqmz64FycNJ0iDiP54pnh67B37naCE</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Liang, Di</creator><creator>Roshan-Zamir, Ashkan</creator><creator>Fan, Yang-Hang</creator><creator>Zhang, Chong</creator><creator>Wang, Binhao</creator><creator>Descos, Antoine</creator><creator>Shen, Wenqing</creator><creator>Yu, Kunzhi</creator><creator>Li, Cheng</creator><creator>Fan, Gaofeng</creator><creator>Kurczveil, Geza</creator><creator>Hu, Yingtao</creator><creator>Huang, Zhihong</creator><creator>Fiorentino, Marco</creator><creator>Kumar, Satish</creator><creator>Palermo, Samuel M.</creator><creator>Beausoleil, Raymond G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1366-0115</orcidid><orcidid>https://orcid.org/0000-0002-4040-8444</orcidid><orcidid>https://orcid.org/0000-0003-1373-6087</orcidid><orcidid>https://orcid.org/0000-0002-6555-1474</orcidid><orcidid>https://orcid.org/0000-0001-8867-3098</orcidid><orcidid>https://orcid.org/0000-0003-0200-4905</orcidid><orcidid>https://orcid.org/0000-0001-9701-8378</orcidid></search><sort><creationdate>20200701</creationdate><title>Fully-Integrated Heterogeneous DML Transmitters for High-Performance Computing</title><author>Liang, Di ; Roshan-Zamir, Ashkan ; Fan, Yang-Hang ; Zhang, Chong ; Wang, Binhao ; Descos, Antoine ; Shen, Wenqing ; Yu, Kunzhi ; Li, Cheng ; Fan, Gaofeng ; Kurczveil, Geza ; Hu, Yingtao ; Huang, Zhihong ; Fiorentino, Marco ; Kumar, Satish ; Palermo, Samuel M. ; Beausoleil, Raymond G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-b12da05e022b55aaca9433026ccb213dd670d65109ff4c71a2b5c26b597239f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CMOS</topic><topic>CMOS integrated circuits</topic><topic>Computation</topic><topic>Computer architecture</topic><topic>Computer simulation</topic><topic>Data centers</topic><topic>Dense Wavelength Division Multiplexing</topic><topic>diode lasers</topic><topic>Driver circuits</topic><topic>Electronics</topic><topic>Equalization</topic><topic>High performance computing</topic><topic>Laser arrays</topic><topic>Lasers</topic><topic>Optical interconnects</topic><topic>Optical transmitters</topic><topic>Photonics</topic><topic>Quantum dot lasers</topic><topic>Quantum dots</topic><topic>Quantum wells</topic><topic>Silicon</topic><topic>silicon photonics</topic><topic>Thermal management</topic><topic>Transmitters</topic><topic>wafer bonding</topic><topic>Wavelength division multiplexing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Di</creatorcontrib><creatorcontrib>Roshan-Zamir, Ashkan</creatorcontrib><creatorcontrib>Fan, Yang-Hang</creatorcontrib><creatorcontrib>Zhang, Chong</creatorcontrib><creatorcontrib>Wang, Binhao</creatorcontrib><creatorcontrib>Descos, Antoine</creatorcontrib><creatorcontrib>Shen, Wenqing</creatorcontrib><creatorcontrib>Yu, Kunzhi</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Fan, Gaofeng</creatorcontrib><creatorcontrib>Kurczveil, Geza</creatorcontrib><creatorcontrib>Hu, Yingtao</creatorcontrib><creatorcontrib>Huang, Zhihong</creatorcontrib><creatorcontrib>Fiorentino, Marco</creatorcontrib><creatorcontrib>Kumar, Satish</creatorcontrib><creatorcontrib>Palermo, Samuel M.</creatorcontrib><creatorcontrib>Beausoleil, Raymond G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Di</au><au>Roshan-Zamir, Ashkan</au><au>Fan, Yang-Hang</au><au>Zhang, Chong</au><au>Wang, Binhao</au><au>Descos, Antoine</au><au>Shen, Wenqing</au><au>Yu, Kunzhi</au><au>Li, Cheng</au><au>Fan, Gaofeng</au><au>Kurczveil, Geza</au><au>Hu, Yingtao</au><au>Huang, Zhihong</au><au>Fiorentino, Marco</au><au>Kumar, Satish</au><au>Palermo, Samuel M.</au><au>Beausoleil, Raymond G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully-Integrated Heterogeneous DML Transmitters for High-Performance Computing</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>38</volume><issue>13</issue><spage>3322</spage><epage>3337</epage><pages>3322-3337</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Optical connectivity, which has been widely deployed in today's datacenters and high-performance computing (HPC) systems, is a disruptive technological revolution to the IT industry in the new Millennium. In our journey to debut an Exascale supercomputer, a completely new computing concept, called memory-driven computing, was innovated recently. This new computing architecture brings challenges and opportunities for novel optical interconnect solutions. Here, we first discuss our strategy to develop appropriate optical link solutions for different data traffic scenarios in memory-driven HPCs. Then, we present detailed review on recent work to demonstrate fully photonics-electronics-integrated single- and multi-wavelength directly modulated laser (DML) transmitters on silicon for the first time. Compact heterogeneous microring lasers and laser arrays were fabricated as photonic engines to work with a customized complementary metal-oxide semiconductor (CMOS) driver circuit. Microring lasers based on conventional quantum well and new quantum dot lasing medium were compared in the experiment. Thermal shunt and MOS capacitor structures were integrated into the lasers for effective thermal management and ultra low-energy tuning. It enables a controllable dense wavelength division multiplexing (DWDM) link architecture in an HPC environment. An equivalent microring laser circuit model was constructed to allow photonics-electronics co-simulation. Equalization functionality in the CMOS driver circuit proved to be critical to achieve up to 14 Gb/s direct modulation with 6 dB extinction ratio. Finally, the on-going and future work is discussed towards more robust, higher speed, and more energy efficient DML transmitters.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2019.2959048</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1366-0115</orcidid><orcidid>https://orcid.org/0000-0002-4040-8444</orcidid><orcidid>https://orcid.org/0000-0003-1373-6087</orcidid><orcidid>https://orcid.org/0000-0002-6555-1474</orcidid><orcidid>https://orcid.org/0000-0001-8867-3098</orcidid><orcidid>https://orcid.org/0000-0003-0200-4905</orcidid><orcidid>https://orcid.org/0000-0001-9701-8378</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2020-07, Vol.38 (13), p.3322-3337 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_ieee_primary_8937048 |
source | IEEE Xplore (Online service) |
subjects | CMOS CMOS integrated circuits Computation Computer architecture Computer simulation Data centers Dense Wavelength Division Multiplexing diode lasers Driver circuits Electronics Equalization High performance computing Laser arrays Lasers Optical interconnects Optical transmitters Photonics Quantum dot lasers Quantum dots Quantum wells Silicon silicon photonics Thermal management Transmitters wafer bonding Wavelength division multiplexing |
title | Fully-Integrated Heterogeneous DML Transmitters for High-Performance Computing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully-Integrated%20Heterogeneous%20DML%20Transmitters%20for%20High-Performance%20Computing&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Liang,%20Di&rft.date=2020-07-01&rft.volume=38&rft.issue=13&rft.spage=3322&rft.epage=3337&rft.pages=3322-3337&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2019.2959048&rft_dat=%3Cproquest_ieee_%3E2424546252%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-b12da05e022b55aaca9433026ccb213dd670d65109ff4c71a2b5c26b597239f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2424546252&rft_id=info:pmid/&rft_ieee_id=8937048&rfr_iscdi=true |