Loading…

Brain Segmentation from Super-Resolved Magnetic Resonance Images

The objective of this work is to investigate the ability of a 2D super resolution (SR) technique in 3D restoration and enhancement of brain magnetic resonance images to facilitate the study of cerebral aging bio-markers. The SR method exploits the joint properties of the system point spread function...

Full description

Saved in:
Bibliographic Details
Main Authors: Bazzi, Farah, Dios Rodriguez-Callejas, Juan D., Fonta, Caroline, Diab, Ahmad, Amoud, Hassan, Falou, Omar, Mescam, Muriel, Basarab, Adrian, Kouame, Denis
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Bazzi, Farah
Dios Rodriguez-Callejas, Juan D.
Fonta, Caroline
Diab, Ahmad
Amoud, Hassan
Falou, Omar
Mescam, Muriel
Basarab, Adrian
Kouame, Denis
description The objective of this work is to investigate the ability of a 2D super resolution (SR) technique in 3D restoration and enhancement of brain magnetic resonance images to facilitate the study of cerebral aging bio-markers. The SR method exploits the joint properties of the system point spread function and sub-sampling operators to derive a fast algorithm. Brain images of the common marmoset, Callithrix jacchus, acquired at different ages are used in this study. The evaluation of the final outcome of our method is done by computing the intracranial volume from the segmentation of the brain compartments: gray matter, white matter and cerebrospinal fluid. Results show that the deblurring of the images improves the segmentation process with respect to the ground truth. However, super resolution leads to the best quantification of the intracranial volume when compared to the deblurred and the original images. Therefore, despite its sub-optimality, the 2D SR method provides reliable results for improving the quality of the images used in the study of aging in terms of precision of reconstruction and computational time.
doi_str_mv 10.1109/ICABME47164.2019.8940281
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8940281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8940281</ieee_id><sourcerecordid>8940281</sourcerecordid><originalsourceid>FETCH-LOGICAL-h259t-ff9aa388cc0e84673037a0de1d6c19ce2691a794b7bc8c9405d5d50acd448a33</originalsourceid><addsrcrecordid>eNotT9tKw0AUXAXBUvMFvuwPbNyzu9nLm7ZULbQItu_ldHMSI82mJFHw741Y5mGGYRhmGOMgcwAZHtbLp8V2ZRxYkysJIffBSOXhimXBeXCTVBoMXLOZ0s6JwgZ7y7Jh-JRyihfSez1jj4sem8R3VLeURhybLvGq71q--zpTL95p6E7fVPIt1onGJvI_J2GKxNct1jTcsZsKTwNlF56z_fNqv3wVm7eXaeJGfKgijKKqAqL2PkZJ3linpXYoS4LSRgiRlA2ALpijO0YfpydFOUFiLI3xqPWc3f_XNkR0OPdNi_3P4XJZ_wLpmUuO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Brain Segmentation from Super-Resolved Magnetic Resonance Images</title><source>IEEE Xplore All Conference Series</source><creator>Bazzi, Farah ; Dios Rodriguez-Callejas, Juan D. ; Fonta, Caroline ; Diab, Ahmad ; Amoud, Hassan ; Falou, Omar ; Mescam, Muriel ; Basarab, Adrian ; Kouame, Denis</creator><creatorcontrib>Bazzi, Farah ; Dios Rodriguez-Callejas, Juan D. ; Fonta, Caroline ; Diab, Ahmad ; Amoud, Hassan ; Falou, Omar ; Mescam, Muriel ; Basarab, Adrian ; Kouame, Denis</creatorcontrib><description>The objective of this work is to investigate the ability of a 2D super resolution (SR) technique in 3D restoration and enhancement of brain magnetic resonance images to facilitate the study of cerebral aging bio-markers. The SR method exploits the joint properties of the system point spread function and sub-sampling operators to derive a fast algorithm. Brain images of the common marmoset, Callithrix jacchus, acquired at different ages are used in this study. The evaluation of the final outcome of our method is done by computing the intracranial volume from the segmentation of the brain compartments: gray matter, white matter and cerebrospinal fluid. Results show that the deblurring of the images improves the segmentation process with respect to the ground truth. However, super resolution leads to the best quantification of the intracranial volume when compared to the deblurred and the original images. Therefore, despite its sub-optimality, the 2D SR method provides reliable results for improving the quality of the images used in the study of aging in terms of precision of reconstruction and computational time.</description><identifier>EISSN: 2377-5696</identifier><identifier>EISBN: 9781728123141</identifier><identifier>EISBN: 1728123143</identifier><identifier>DOI: 10.1109/ICABME47164.2019.8940281</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aging ; cerebral aging ; ICV ; Image segmentation ; Magnetic resonance imaging ; marmoset ; segmentation ; Single image super-resolution ; Spatial resolution ; structural MRI ; Three-dimensional displays ; Two dimensional displays</subject><ispartof>2019 Fifth International Conference on Advances in Biomedical Engineering (ICABME), 2019, p.1-4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8940281$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,27912,54542,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8940281$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bazzi, Farah</creatorcontrib><creatorcontrib>Dios Rodriguez-Callejas, Juan D.</creatorcontrib><creatorcontrib>Fonta, Caroline</creatorcontrib><creatorcontrib>Diab, Ahmad</creatorcontrib><creatorcontrib>Amoud, Hassan</creatorcontrib><creatorcontrib>Falou, Omar</creatorcontrib><creatorcontrib>Mescam, Muriel</creatorcontrib><creatorcontrib>Basarab, Adrian</creatorcontrib><creatorcontrib>Kouame, Denis</creatorcontrib><title>Brain Segmentation from Super-Resolved Magnetic Resonance Images</title><title>2019 Fifth International Conference on Advances in Biomedical Engineering (ICABME)</title><addtitle>ICABME</addtitle><description>The objective of this work is to investigate the ability of a 2D super resolution (SR) technique in 3D restoration and enhancement of brain magnetic resonance images to facilitate the study of cerebral aging bio-markers. The SR method exploits the joint properties of the system point spread function and sub-sampling operators to derive a fast algorithm. Brain images of the common marmoset, Callithrix jacchus, acquired at different ages are used in this study. The evaluation of the final outcome of our method is done by computing the intracranial volume from the segmentation of the brain compartments: gray matter, white matter and cerebrospinal fluid. Results show that the deblurring of the images improves the segmentation process with respect to the ground truth. However, super resolution leads to the best quantification of the intracranial volume when compared to the deblurred and the original images. Therefore, despite its sub-optimality, the 2D SR method provides reliable results for improving the quality of the images used in the study of aging in terms of precision of reconstruction and computational time.</description><subject>Aging</subject><subject>cerebral aging</subject><subject>ICV</subject><subject>Image segmentation</subject><subject>Magnetic resonance imaging</subject><subject>marmoset</subject><subject>segmentation</subject><subject>Single image super-resolution</subject><subject>Spatial resolution</subject><subject>structural MRI</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><issn>2377-5696</issn><isbn>9781728123141</isbn><isbn>1728123143</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT9tKw0AUXAXBUvMFvuwPbNyzu9nLm7ZULbQItu_ldHMSI82mJFHw741Y5mGGYRhmGOMgcwAZHtbLp8V2ZRxYkysJIffBSOXhimXBeXCTVBoMXLOZ0s6JwgZ7y7Jh-JRyihfSez1jj4sem8R3VLeURhybLvGq71q--zpTL95p6E7fVPIt1onGJvI_J2GKxNct1jTcsZsKTwNlF56z_fNqv3wVm7eXaeJGfKgijKKqAqL2PkZJ3linpXYoS4LSRgiRlA2ALpijO0YfpydFOUFiLI3xqPWc3f_XNkR0OPdNi_3P4XJZ_wLpmUuO</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Bazzi, Farah</creator><creator>Dios Rodriguez-Callejas, Juan D.</creator><creator>Fonta, Caroline</creator><creator>Diab, Ahmad</creator><creator>Amoud, Hassan</creator><creator>Falou, Omar</creator><creator>Mescam, Muriel</creator><creator>Basarab, Adrian</creator><creator>Kouame, Denis</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201910</creationdate><title>Brain Segmentation from Super-Resolved Magnetic Resonance Images</title><author>Bazzi, Farah ; Dios Rodriguez-Callejas, Juan D. ; Fonta, Caroline ; Diab, Ahmad ; Amoud, Hassan ; Falou, Omar ; Mescam, Muriel ; Basarab, Adrian ; Kouame, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h259t-ff9aa388cc0e84673037a0de1d6c19ce2691a794b7bc8c9405d5d50acd448a33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aging</topic><topic>cerebral aging</topic><topic>ICV</topic><topic>Image segmentation</topic><topic>Magnetic resonance imaging</topic><topic>marmoset</topic><topic>segmentation</topic><topic>Single image super-resolution</topic><topic>Spatial resolution</topic><topic>structural MRI</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Bazzi, Farah</creatorcontrib><creatorcontrib>Dios Rodriguez-Callejas, Juan D.</creatorcontrib><creatorcontrib>Fonta, Caroline</creatorcontrib><creatorcontrib>Diab, Ahmad</creatorcontrib><creatorcontrib>Amoud, Hassan</creatorcontrib><creatorcontrib>Falou, Omar</creatorcontrib><creatorcontrib>Mescam, Muriel</creatorcontrib><creatorcontrib>Basarab, Adrian</creatorcontrib><creatorcontrib>Kouame, Denis</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bazzi, Farah</au><au>Dios Rodriguez-Callejas, Juan D.</au><au>Fonta, Caroline</au><au>Diab, Ahmad</au><au>Amoud, Hassan</au><au>Falou, Omar</au><au>Mescam, Muriel</au><au>Basarab, Adrian</au><au>Kouame, Denis</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Brain Segmentation from Super-Resolved Magnetic Resonance Images</atitle><btitle>2019 Fifth International Conference on Advances in Biomedical Engineering (ICABME)</btitle><stitle>ICABME</stitle><date>2019-10</date><risdate>2019</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2377-5696</eissn><eisbn>9781728123141</eisbn><eisbn>1728123143</eisbn><abstract>The objective of this work is to investigate the ability of a 2D super resolution (SR) technique in 3D restoration and enhancement of brain magnetic resonance images to facilitate the study of cerebral aging bio-markers. The SR method exploits the joint properties of the system point spread function and sub-sampling operators to derive a fast algorithm. Brain images of the common marmoset, Callithrix jacchus, acquired at different ages are used in this study. The evaluation of the final outcome of our method is done by computing the intracranial volume from the segmentation of the brain compartments: gray matter, white matter and cerebrospinal fluid. Results show that the deblurring of the images improves the segmentation process with respect to the ground truth. However, super resolution leads to the best quantification of the intracranial volume when compared to the deblurred and the original images. Therefore, despite its sub-optimality, the 2D SR method provides reliable results for improving the quality of the images used in the study of aging in terms of precision of reconstruction and computational time.</abstract><pub>IEEE</pub><doi>10.1109/ICABME47164.2019.8940281</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2377-5696
ispartof 2019 Fifth International Conference on Advances in Biomedical Engineering (ICABME), 2019, p.1-4
issn 2377-5696
language eng
recordid cdi_ieee_primary_8940281
source IEEE Xplore All Conference Series
subjects Aging
cerebral aging
ICV
Image segmentation
Magnetic resonance imaging
marmoset
segmentation
Single image super-resolution
Spatial resolution
structural MRI
Three-dimensional displays
Two dimensional displays
title Brain Segmentation from Super-Resolved Magnetic Resonance Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Brain%20Segmentation%20from%20Super-Resolved%20Magnetic%20Resonance%20Images&rft.btitle=2019%20Fifth%20International%20Conference%20on%20Advances%20in%20Biomedical%20Engineering%20(ICABME)&rft.au=Bazzi,%20Farah&rft.date=2019-10&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2377-5696&rft_id=info:doi/10.1109/ICABME47164.2019.8940281&rft.eisbn=9781728123141&rft.eisbn_list=1728123143&rft_dat=%3Cieee_CHZPO%3E8940281%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h259t-ff9aa388cc0e84673037a0de1d6c19ce2691a794b7bc8c9405d5d50acd448a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8940281&rfr_iscdi=true