Loading…

Remaining Useful Life Prediction Based on an Adaptive Inverse Gaussian Degradation Process With Measurement Errors

Remaining useful life (RUL) prediction plays a crucial role in prognostics and health management (PHM). Recently, the adaptive model-based RUL prediction, which is proven effective and flexible, has gained considerable attention. Most research on adaptive degradation models focuses on the Wiener pro...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.3498-3510
Main Authors: Chen, Xudan, Sun, Xinli, Si, Xiaosheng, Li, Guodong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-28c46aee581f85ba09845871ffb7d037adaf5a41eff5d8106bb687c489a4c67b3
cites cdi_FETCH-LOGICAL-c408t-28c46aee581f85ba09845871ffb7d037adaf5a41eff5d8106bb687c489a4c67b3
container_end_page 3510
container_issue
container_start_page 3498
container_title IEEE access
container_volume 8
creator Chen, Xudan
Sun, Xinli
Si, Xiaosheng
Li, Guodong
description Remaining useful life (RUL) prediction plays a crucial role in prognostics and health management (PHM). Recently, the adaptive model-based RUL prediction, which is proven effective and flexible, has gained considerable attention. Most research on adaptive degradation models focuses on the Wiener process. However, since the degradation process of some products is accumulated and irreversible, the inverse Gaussian (IG) process that can describe monotonic degradation paths is a natural choice for degradation modelling. This article proposes a nonlinear adaptive IG process along with the corresponding state space model considering measurement errors. Then, an improved particle filtering algorithm is presented to update the degradation parameter and estimate the underlying degradation state under the nonGaussian assumptions in the state space model. The RUL prediction depending on historical degradation data is derived based on the results of particle methods, which can avoid high-dimensional integration. In addition, the expectation-maximization (EM) algorithm combined with an improved particle smoother is developed to estimate and adaptively update the unknown model parameters once newly monitored degradation data become available. Finally, this article concludes with a simulation study and a case application to demonstrate the applicability and superiority of the proposed method.
doi_str_mv 10.1109/ACCESS.2019.2961951
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8941060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8941060</ieee_id><doaj_id>oai_doaj_org_article_42aa64f6bd4146c7bfc3845e6e270099</doaj_id><sourcerecordid>2454793584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-28c46aee581f85ba09845871ffb7d037adaf5a41eff5d8106bb687c489a4c67b3</originalsourceid><addsrcrecordid>eNpNUU1PGzEQXaFWAgG_gIulnpPau_48pmmgkYJApahHa9Y7Th0l62DvIvHva1iEmMuMZua9N6NXVVeMzhmj5vtiuVw9PMxrysy8NpIZwU6qs5pJM2tEI798qk-ry5x3tIQuLaHOqvQbDxD60G_JY0Y_7skmeCT3CbvghhB78gMydqQU0JNFB8chPCNZ98-YMpIbGHMOZfITtwk6eEPcp-gwZ_I3DP_ILUIeEx6wH8gqpZjyRfXVwz7j5Xs-rx6vV3-Wv2abu5v1crGZOU71MKu14xIQhWZeixao0VxoxbxvVUcbVdS8AM7Qe9FpRmXbSq0c1wa4k6ptzqv1xNtF2NljCgdILzZCsG-NmLYW0hDcHi2vAST3su0449Kp1rumqKHEWlFqTOH6NnEdU3waMQ92F8fUl_NtzQVXphGal61m2nIp5pzQf6gyal-9spNX9tUr--5VQV1NqICIHwhtePmJNv8Byg-QjQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454793584</pqid></control><display><type>article</type><title>Remaining Useful Life Prediction Based on an Adaptive Inverse Gaussian Degradation Process With Measurement Errors</title><source>IEEE Open Access Journals</source><creator>Chen, Xudan ; Sun, Xinli ; Si, Xiaosheng ; Li, Guodong</creator><creatorcontrib>Chen, Xudan ; Sun, Xinli ; Si, Xiaosheng ; Li, Guodong</creatorcontrib><description>Remaining useful life (RUL) prediction plays a crucial role in prognostics and health management (PHM). Recently, the adaptive model-based RUL prediction, which is proven effective and flexible, has gained considerable attention. Most research on adaptive degradation models focuses on the Wiener process. However, since the degradation process of some products is accumulated and irreversible, the inverse Gaussian (IG) process that can describe monotonic degradation paths is a natural choice for degradation modelling. This article proposes a nonlinear adaptive IG process along with the corresponding state space model considering measurement errors. Then, an improved particle filtering algorithm is presented to update the degradation parameter and estimate the underlying degradation state under the nonGaussian assumptions in the state space model. The RUL prediction depending on historical degradation data is derived based on the results of particle methods, which can avoid high-dimensional integration. In addition, the expectation-maximization (EM) algorithm combined with an improved particle smoother is developed to estimate and adaptively update the unknown model parameters once newly monitored degradation data become available. Finally, this article concludes with a simulation study and a case application to demonstrate the applicability and superiority of the proposed method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2961951</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive model ; Algorithms ; Corresponding states ; Data models ; Degradation ; Gaussian process ; inverse Gaussian process ; Life prediction ; Measurement errors ; Parameter estimation ; Particle methods (mathematics) ; Predictive models ; Prognostics and health management ; Reliability ; remaining useful life ; State space models ; Useful life</subject><ispartof>IEEE access, 2020, Vol.8, p.3498-3510</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-28c46aee581f85ba09845871ffb7d037adaf5a41eff5d8106bb687c489a4c67b3</citedby><cites>FETCH-LOGICAL-c408t-28c46aee581f85ba09845871ffb7d037adaf5a41eff5d8106bb687c489a4c67b3</cites><orcidid>0000-0001-5226-9923 ; 0000-0003-0132-0105 ; 0000-0003-1350-8850 ; 0000-0002-3091-4343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8941060$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Chen, Xudan</creatorcontrib><creatorcontrib>Sun, Xinli</creatorcontrib><creatorcontrib>Si, Xiaosheng</creatorcontrib><creatorcontrib>Li, Guodong</creatorcontrib><title>Remaining Useful Life Prediction Based on an Adaptive Inverse Gaussian Degradation Process With Measurement Errors</title><title>IEEE access</title><addtitle>Access</addtitle><description>Remaining useful life (RUL) prediction plays a crucial role in prognostics and health management (PHM). Recently, the adaptive model-based RUL prediction, which is proven effective and flexible, has gained considerable attention. Most research on adaptive degradation models focuses on the Wiener process. However, since the degradation process of some products is accumulated and irreversible, the inverse Gaussian (IG) process that can describe monotonic degradation paths is a natural choice for degradation modelling. This article proposes a nonlinear adaptive IG process along with the corresponding state space model considering measurement errors. Then, an improved particle filtering algorithm is presented to update the degradation parameter and estimate the underlying degradation state under the nonGaussian assumptions in the state space model. The RUL prediction depending on historical degradation data is derived based on the results of particle methods, which can avoid high-dimensional integration. In addition, the expectation-maximization (EM) algorithm combined with an improved particle smoother is developed to estimate and adaptively update the unknown model parameters once newly monitored degradation data become available. Finally, this article concludes with a simulation study and a case application to demonstrate the applicability and superiority of the proposed method.</description><subject>Adaptation models</subject><subject>Adaptive model</subject><subject>Algorithms</subject><subject>Corresponding states</subject><subject>Data models</subject><subject>Degradation</subject><subject>Gaussian process</subject><subject>inverse Gaussian process</subject><subject>Life prediction</subject><subject>Measurement errors</subject><subject>Parameter estimation</subject><subject>Particle methods (mathematics)</subject><subject>Predictive models</subject><subject>Prognostics and health management</subject><subject>Reliability</subject><subject>remaining useful life</subject><subject>State space models</subject><subject>Useful life</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PGzEQXaFWAgG_gIulnpPau_48pmmgkYJApahHa9Y7Th0l62DvIvHva1iEmMuMZua9N6NXVVeMzhmj5vtiuVw9PMxrysy8NpIZwU6qs5pJM2tEI798qk-ry5x3tIQuLaHOqvQbDxD60G_JY0Y_7skmeCT3CbvghhB78gMydqQU0JNFB8chPCNZ98-YMpIbGHMOZfITtwk6eEPcp-gwZ_I3DP_ILUIeEx6wH8gqpZjyRfXVwz7j5Xs-rx6vV3-Wv2abu5v1crGZOU71MKu14xIQhWZeixao0VxoxbxvVUcbVdS8AM7Qe9FpRmXbSq0c1wa4k6ptzqv1xNtF2NljCgdILzZCsG-NmLYW0hDcHi2vAST3su0449Kp1rumqKHEWlFqTOH6NnEdU3waMQ92F8fUl_NtzQVXphGal61m2nIp5pzQf6gyal-9spNX9tUr--5VQV1NqICIHwhtePmJNv8Byg-QjQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Chen, Xudan</creator><creator>Sun, Xinli</creator><creator>Si, Xiaosheng</creator><creator>Li, Guodong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5226-9923</orcidid><orcidid>https://orcid.org/0000-0003-0132-0105</orcidid><orcidid>https://orcid.org/0000-0003-1350-8850</orcidid><orcidid>https://orcid.org/0000-0002-3091-4343</orcidid></search><sort><creationdate>2020</creationdate><title>Remaining Useful Life Prediction Based on an Adaptive Inverse Gaussian Degradation Process With Measurement Errors</title><author>Chen, Xudan ; Sun, Xinli ; Si, Xiaosheng ; Li, Guodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-28c46aee581f85ba09845871ffb7d037adaf5a41eff5d8106bb687c489a4c67b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation models</topic><topic>Adaptive model</topic><topic>Algorithms</topic><topic>Corresponding states</topic><topic>Data models</topic><topic>Degradation</topic><topic>Gaussian process</topic><topic>inverse Gaussian process</topic><topic>Life prediction</topic><topic>Measurement errors</topic><topic>Parameter estimation</topic><topic>Particle methods (mathematics)</topic><topic>Predictive models</topic><topic>Prognostics and health management</topic><topic>Reliability</topic><topic>remaining useful life</topic><topic>State space models</topic><topic>Useful life</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xudan</creatorcontrib><creatorcontrib>Sun, Xinli</creatorcontrib><creatorcontrib>Si, Xiaosheng</creatorcontrib><creatorcontrib>Li, Guodong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xudan</au><au>Sun, Xinli</au><au>Si, Xiaosheng</au><au>Li, Guodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remaining Useful Life Prediction Based on an Adaptive Inverse Gaussian Degradation Process With Measurement Errors</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>3498</spage><epage>3510</epage><pages>3498-3510</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Remaining useful life (RUL) prediction plays a crucial role in prognostics and health management (PHM). Recently, the adaptive model-based RUL prediction, which is proven effective and flexible, has gained considerable attention. Most research on adaptive degradation models focuses on the Wiener process. However, since the degradation process of some products is accumulated and irreversible, the inverse Gaussian (IG) process that can describe monotonic degradation paths is a natural choice for degradation modelling. This article proposes a nonlinear adaptive IG process along with the corresponding state space model considering measurement errors. Then, an improved particle filtering algorithm is presented to update the degradation parameter and estimate the underlying degradation state under the nonGaussian assumptions in the state space model. The RUL prediction depending on historical degradation data is derived based on the results of particle methods, which can avoid high-dimensional integration. In addition, the expectation-maximization (EM) algorithm combined with an improved particle smoother is developed to estimate and adaptively update the unknown model parameters once newly monitored degradation data become available. Finally, this article concludes with a simulation study and a case application to demonstrate the applicability and superiority of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2961951</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5226-9923</orcidid><orcidid>https://orcid.org/0000-0003-0132-0105</orcidid><orcidid>https://orcid.org/0000-0003-1350-8850</orcidid><orcidid>https://orcid.org/0000-0002-3091-4343</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.3498-3510
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8941060
source IEEE Open Access Journals
subjects Adaptation models
Adaptive model
Algorithms
Corresponding states
Data models
Degradation
Gaussian process
inverse Gaussian process
Life prediction
Measurement errors
Parameter estimation
Particle methods (mathematics)
Predictive models
Prognostics and health management
Reliability
remaining useful life
State space models
Useful life
title Remaining Useful Life Prediction Based on an Adaptive Inverse Gaussian Degradation Process With Measurement Errors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remaining%20Useful%20Life%20Prediction%20Based%20on%20an%20Adaptive%20Inverse%20Gaussian%20Degradation%20Process%20With%20Measurement%20Errors&rft.jtitle=IEEE%20access&rft.au=Chen,%20Xudan&rft.date=2020&rft.volume=8&rft.spage=3498&rft.epage=3510&rft.pages=3498-3510&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2961951&rft_dat=%3Cproquest_ieee_%3E2454793584%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-28c46aee581f85ba09845871ffb7d037adaf5a41eff5d8106bb687c489a4c67b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454793584&rft_id=info:pmid/&rft_ieee_id=8941060&rfr_iscdi=true