Loading…

Cooperative Computation Offloading and Resource Allocation for Blockchain-Enabled Mobile-Edge Computing: A Deep Reinforcement Learning Approach

Mobile-edge computing (MEC) is a promising paradigm to improve the quality of computation experience of mobile devices because it allows mobile devices to offload computing tasks to MEC servers, benefiting from the powerful computing resources of MEC servers. However, the existing computation-offloa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE internet of things journal 2020-07, Vol.7 (7), p.6214-6228
Main Authors: Feng, Jie, Richard Yu, F., Pei, Qingqi, Chu, Xiaoli, Du, Jianbo, Zhu, Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mobile-edge computing (MEC) is a promising paradigm to improve the quality of computation experience of mobile devices because it allows mobile devices to offload computing tasks to MEC servers, benefiting from the powerful computing resources of MEC servers. However, the existing computation-offloading works have also some open issues: 1) security and privacy issues; 2) cooperative computation offloading; and 3) dynamic optimization. To address the security and privacy issues, we employ the blockchain technology that ensures the reliability and irreversibility of data in MEC systems. Meanwhile, we jointly design and optimize the performance of blockchain and MEC. In this article, we develop a cooperative computation offloading and resource allocation framework for blockchain-enabled MEC systems. In the framework, we design a multiobjective function to maximize the computation rate of MEC systems and the transaction throughput of blockchain systems by jointly optimizing offloading decision, power allocation, block size, and block interval. Due to the dynamic characteristics of the wireless fading channel and the processing queues at MEC servers, the joint optimization is formulated as a Markov decision process (MDP). To tackle the dynamics and complexity of the blockchain-enabled MEC system, we develop an asynchronous advantage actor-critic-based cooperation computation offloading and resource allocation algorithm to solve the MDP problem. In the algorithm, deep neural networks are optimized by utilizing asynchronous gradient descent and eliminating the correlation of data. The simulation results show that the proposed algorithm converges fast and achieves significant performance improvements over existing schemes in terms of total reward.
ISSN:2327-4662
2327-4662
DOI:10.1109/JIOT.2019.2961707