Loading…
Learning Correspondence From the Cycle-Consistency of Time
We introduce a self-supervised method for learning visual correspondence from unlabeled video. The main idea is to use cycle-consistency in time as free supervisory signal for learning visual representations from scratch. At training time, our model learns a feature map representation to be useful f...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c249t-cb5ce4cf019c4c04a39e291e21da9402b9638c9c23f268ddb38bda14192413ac3 |
---|---|
cites | |
container_end_page | 2571 |
container_issue | |
container_start_page | 2561 |
container_title | |
container_volume | |
creator | Wang, Xiaolong Jabri, Allan Efros, Alexei A. |
description | We introduce a self-supervised method for learning visual correspondence from unlabeled video. The main idea is to use cycle-consistency in time as free supervisory signal for learning visual representations from scratch. At training time, our model learns a feature map representation to be useful for performing cycle-consistent tracking. At test time, we use the acquired representation to find nearest neighbors across space and time. We demonstrate the generalizability of the representation -- without finetuning -- across a range of visual correspondence tasks, including video object segmentation, keypoint tracking, and optical flow. Our approach outperforms previous self-supervised methods and performs competitively with strongly supervised methods. |
doi_str_mv | 10.1109/CVPR.2019.00267 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8954240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8954240</ieee_id><sourcerecordid>8954240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-cb5ce4cf019c4c04a39e291e21da9402b9638c9c23f268ddb38bda14192413ac3</originalsourceid><addsrcrecordid>eNotjsFKxDAUAKMguKw9e_CSH2jNe0mbPG8SXFcoKLJ6XdL0VSvbdkl72b93QU9zGBhGiFtQBYCie__59l6gAiqUwspeiIysA4sONJJ2l2KFpS1zq2x5LbJ5_lFKaQSoyK3EQ80hjf34Jf2UEs_HaWx5jCw3aRrk8s3Sn-KBcz-Ncz8vZ3WSUyd3_cA34qoLh5mzf67Fx-Zp57d5_fr84h_rPKKhJY9NGdnE7jwYTVQmaGIkYIQ2kFHYUKVdpIi6w8q1baNd0wYwQGhAh6jX4u6v2zPz_pj6IaTT3lFp0Cj9CxKfR2M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning Correspondence From the Cycle-Consistency of Time</title><source>IEEE Xplore All Conference Series</source><creator>Wang, Xiaolong ; Jabri, Allan ; Efros, Alexei A.</creator><creatorcontrib>Wang, Xiaolong ; Jabri, Allan ; Efros, Alexei A.</creatorcontrib><description>We introduce a self-supervised method for learning visual correspondence from unlabeled video. The main idea is to use cycle-consistency in time as free supervisory signal for learning visual representations from scratch. At training time, our model learns a feature map representation to be useful for performing cycle-consistent tracking. At test time, we use the acquired representation to find nearest neighbors across space and time. We demonstrate the generalizability of the representation -- without finetuning -- across a range of visual correspondence tasks, including video object segmentation, keypoint tracking, and optical flow. Our approach outperforms previous self-supervised methods and performs competitively with strongly supervised methods.</description><identifier>EISSN: 2575-7075</identifier><identifier>EISBN: 9781728132938</identifier><identifier>EISBN: 1728132932</identifier><identifier>DOI: 10.1109/CVPR.2019.00267</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer vision ; Motion and Tracking ; Object segmentation ; Optical flow ; Pattern recognition ; Representation Learning ; Task analysis ; Training ; Video Analytics ; Visualization</subject><ispartof>2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, p.2561-2571</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-cb5ce4cf019c4c04a39e291e21da9402b9638c9c23f268ddb38bda14192413ac3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8954240$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8954240$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Xiaolong</creatorcontrib><creatorcontrib>Jabri, Allan</creatorcontrib><creatorcontrib>Efros, Alexei A.</creatorcontrib><title>Learning Correspondence From the Cycle-Consistency of Time</title><title>2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</title><addtitle>CVPR</addtitle><description>We introduce a self-supervised method for learning visual correspondence from unlabeled video. The main idea is to use cycle-consistency in time as free supervisory signal for learning visual representations from scratch. At training time, our model learns a feature map representation to be useful for performing cycle-consistent tracking. At test time, we use the acquired representation to find nearest neighbors across space and time. We demonstrate the generalizability of the representation -- without finetuning -- across a range of visual correspondence tasks, including video object segmentation, keypoint tracking, and optical flow. Our approach outperforms previous self-supervised methods and performs competitively with strongly supervised methods.</description><subject>Computer vision</subject><subject>Motion and Tracking</subject><subject>Object segmentation</subject><subject>Optical flow</subject><subject>Pattern recognition</subject><subject>Representation Learning</subject><subject>Task analysis</subject><subject>Training</subject><subject>Video Analytics</subject><subject>Visualization</subject><issn>2575-7075</issn><isbn>9781728132938</isbn><isbn>1728132932</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjsFKxDAUAKMguKw9e_CSH2jNe0mbPG8SXFcoKLJ6XdL0VSvbdkl72b93QU9zGBhGiFtQBYCie__59l6gAiqUwspeiIysA4sONJJ2l2KFpS1zq2x5LbJ5_lFKaQSoyK3EQ80hjf34Jf2UEs_HaWx5jCw3aRrk8s3Sn-KBcz-Ncz8vZ3WSUyd3_cA34qoLh5mzf67Fx-Zp57d5_fr84h_rPKKhJY9NGdnE7jwYTVQmaGIkYIQ2kFHYUKVdpIi6w8q1baNd0wYwQGhAh6jX4u6v2zPz_pj6IaTT3lFp0Cj9CxKfR2M</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Wang, Xiaolong</creator><creator>Jabri, Allan</creator><creator>Efros, Alexei A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201906</creationdate><title>Learning Correspondence From the Cycle-Consistency of Time</title><author>Wang, Xiaolong ; Jabri, Allan ; Efros, Alexei A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-cb5ce4cf019c4c04a39e291e21da9402b9638c9c23f268ddb38bda14192413ac3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer vision</topic><topic>Motion and Tracking</topic><topic>Object segmentation</topic><topic>Optical flow</topic><topic>Pattern recognition</topic><topic>Representation Learning</topic><topic>Task analysis</topic><topic>Training</topic><topic>Video Analytics</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaolong</creatorcontrib><creatorcontrib>Jabri, Allan</creatorcontrib><creatorcontrib>Efros, Alexei A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Xiaolong</au><au>Jabri, Allan</au><au>Efros, Alexei A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning Correspondence From the Cycle-Consistency of Time</atitle><btitle>2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</btitle><stitle>CVPR</stitle><date>2019-06</date><risdate>2019</risdate><spage>2561</spage><epage>2571</epage><pages>2561-2571</pages><eissn>2575-7075</eissn><eisbn>9781728132938</eisbn><eisbn>1728132932</eisbn><abstract>We introduce a self-supervised method for learning visual correspondence from unlabeled video. The main idea is to use cycle-consistency in time as free supervisory signal for learning visual representations from scratch. At training time, our model learns a feature map representation to be useful for performing cycle-consistent tracking. At test time, we use the acquired representation to find nearest neighbors across space and time. We demonstrate the generalizability of the representation -- without finetuning -- across a range of visual correspondence tasks, including video object segmentation, keypoint tracking, and optical flow. Our approach outperforms previous self-supervised methods and performs competitively with strongly supervised methods.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2019.00267</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2575-7075 |
ispartof | 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, p.2561-2571 |
issn | 2575-7075 |
language | eng |
recordid | cdi_ieee_primary_8954240 |
source | IEEE Xplore All Conference Series |
subjects | Computer vision Motion and Tracking Object segmentation Optical flow Pattern recognition Representation Learning Task analysis Training Video Analytics Visualization |
title | Learning Correspondence From the Cycle-Consistency of Time |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20Correspondence%20From%20the%20Cycle-Consistency%20of%20Time&rft.btitle=2019%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20(CVPR)&rft.au=Wang,%20Xiaolong&rft.date=2019-06&rft.spage=2561&rft.epage=2571&rft.pages=2561-2571&rft.eissn=2575-7075&rft_id=info:doi/10.1109/CVPR.2019.00267&rft.eisbn=9781728132938&rft.eisbn_list=1728132932&rft_dat=%3Cieee_CHZPO%3E8954240%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-cb5ce4cf019c4c04a39e291e21da9402b9638c9c23f268ddb38bda14192413ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8954240&rfr_iscdi=true |