Loading…
Imaging Flow Cytometry at >13K events/s Using GPU-Accelerated Computer Vision
Flow cytometers are widely used to rapidly measure characteristics of single cells. Typical laser-based instruments provide throughputs of >10,000 events/s; however, the number of measured features is typically small and apply to the entire cell volume. Imaging flow cytometers (IFC) rely instead...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Vedhanayagam, Arpith Basu, Amar S. |
description | Flow cytometers are widely used to rapidly measure characteristics of single cells. Typical laser-based instruments provide throughputs of >10,000 events/s; however, the number of measured features is typically small and apply to the entire cell volume. Imaging flow cytometers (IFC) rely instead on 2D images of the objects, providing hundreds to millions of spatially resolved features. However, the throughput of IFCs is typically lower (several thousand events/s) due to the computational overhead of 2D image processing. Here, we demonstrate a GPU-accelerated computer vision analyzer which substantially increases computational throughput. When coupled to a 300 frame per second (fps) real-time camera, the system is limited by the camera and analyzes 1260 particles/s in a 500x700 pixel video with 4-5 particles/frame. When reading from a solid state disk, the throughput increases to 4500 fps with ~3 particles per frame, resulting in a throughput of 13,500 particles/s. The reported throughput is 2.5-4X higher than existing technologies, paving the way for ultra-high throughput IFC. |
doi_str_mv | 10.1109/SENSORS43011.2019.8956759 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8956759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8956759</ieee_id><sourcerecordid>8956759</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f24e561e78a5c690c1b1b0f67008be64276a03d84b424c28ab77832eae2dfb603</originalsourceid><addsrcrecordid>eNotj8tOwkAUQEcTExH5AjfjBxTm3pnOY2NCGkAiihHrlkzbW1JDKemMGv7eGFmdzclJDmP3IMYAwk02s5fN-m2jpAAYowA3ti7VJnUXbOSMBYMWQEsFl2yAoG3iEN01uwnhUwgUKdoBe162ftccdny-7354dopdS7E_cR_5A8gnTt90iGESeB7-rMVrnkzLkvbU-0gVz7r2-BWp5x9NaLrDLbuq_T7Q6Mwhy-ez9-wxWa0Xy2y6ShowaUxqVJRqIGN9WmonSiigELU2QtiCtEKjvZCVVYVCVaL1hTFWInnCqi60kEN2999tiGh77JvW96ft-V7-AqyeTt4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Imaging Flow Cytometry at >13K events/s Using GPU-Accelerated Computer Vision</title><source>IEEE Xplore All Conference Series</source><creator>Vedhanayagam, Arpith ; Basu, Amar S.</creator><creatorcontrib>Vedhanayagam, Arpith ; Basu, Amar S.</creatorcontrib><description>Flow cytometers are widely used to rapidly measure characteristics of single cells. Typical laser-based instruments provide throughputs of >10,000 events/s; however, the number of measured features is typically small and apply to the entire cell volume. Imaging flow cytometers (IFC) rely instead on 2D images of the objects, providing hundreds to millions of spatially resolved features. However, the throughput of IFCs is typically lower (several thousand events/s) due to the computational overhead of 2D image processing. Here, we demonstrate a GPU-accelerated computer vision analyzer which substantially increases computational throughput. When coupled to a 300 frame per second (fps) real-time camera, the system is limited by the camera and analyzes 1260 particles/s in a 500x700 pixel video with 4-5 particles/frame. When reading from a solid state disk, the throughput increases to 4500 fps with ~3 particles per frame, resulting in a throughput of 13,500 particles/s. The reported throughput is 2.5-4X higher than existing technologies, paving the way for ultra-high throughput IFC.</description><identifier>EISSN: 2168-9229</identifier><identifier>EISBN: 9781728116341</identifier><identifier>EISBN: 1728116341</identifier><identifier>DOI: 10.1109/SENSORS43011.2019.8956759</identifier><language>eng</language><publisher>IEEE</publisher><subject>computer vision ; GPU ; imaging flow cytometry</subject><ispartof>2019 IEEE SENSORS, 2019, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8956759$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8956759$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vedhanayagam, Arpith</creatorcontrib><creatorcontrib>Basu, Amar S.</creatorcontrib><title>Imaging Flow Cytometry at >13K events/s Using GPU-Accelerated Computer Vision</title><title>2019 IEEE SENSORS</title><addtitle>ICSENS</addtitle><description>Flow cytometers are widely used to rapidly measure characteristics of single cells. Typical laser-based instruments provide throughputs of >10,000 events/s; however, the number of measured features is typically small and apply to the entire cell volume. Imaging flow cytometers (IFC) rely instead on 2D images of the objects, providing hundreds to millions of spatially resolved features. However, the throughput of IFCs is typically lower (several thousand events/s) due to the computational overhead of 2D image processing. Here, we demonstrate a GPU-accelerated computer vision analyzer which substantially increases computational throughput. When coupled to a 300 frame per second (fps) real-time camera, the system is limited by the camera and analyzes 1260 particles/s in a 500x700 pixel video with 4-5 particles/frame. When reading from a solid state disk, the throughput increases to 4500 fps with ~3 particles per frame, resulting in a throughput of 13,500 particles/s. The reported throughput is 2.5-4X higher than existing technologies, paving the way for ultra-high throughput IFC.</description><subject>computer vision</subject><subject>GPU</subject><subject>imaging flow cytometry</subject><issn>2168-9229</issn><isbn>9781728116341</isbn><isbn>1728116341</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tOwkAUQEcTExH5AjfjBxTm3pnOY2NCGkAiihHrlkzbW1JDKemMGv7eGFmdzclJDmP3IMYAwk02s5fN-m2jpAAYowA3ti7VJnUXbOSMBYMWQEsFl2yAoG3iEN01uwnhUwgUKdoBe162ftccdny-7354dopdS7E_cR_5A8gnTt90iGESeB7-rMVrnkzLkvbU-0gVz7r2-BWp5x9NaLrDLbuq_T7Q6Mwhy-ez9-wxWa0Xy2y6ShowaUxqVJRqIGN9WmonSiigELU2QtiCtEKjvZCVVYVCVaL1hTFWInnCqi60kEN2999tiGh77JvW96ft-V7-AqyeTt4</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Vedhanayagam, Arpith</creator><creator>Basu, Amar S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201910</creationdate><title>Imaging Flow Cytometry at >13K events/s Using GPU-Accelerated Computer Vision</title><author>Vedhanayagam, Arpith ; Basu, Amar S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f24e561e78a5c690c1b1b0f67008be64276a03d84b424c28ab77832eae2dfb603</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>computer vision</topic><topic>GPU</topic><topic>imaging flow cytometry</topic><toplevel>online_resources</toplevel><creatorcontrib>Vedhanayagam, Arpith</creatorcontrib><creatorcontrib>Basu, Amar S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vedhanayagam, Arpith</au><au>Basu, Amar S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Imaging Flow Cytometry at >13K events/s Using GPU-Accelerated Computer Vision</atitle><btitle>2019 IEEE SENSORS</btitle><stitle>ICSENS</stitle><date>2019-10</date><risdate>2019</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2168-9229</eissn><eisbn>9781728116341</eisbn><eisbn>1728116341</eisbn><abstract>Flow cytometers are widely used to rapidly measure characteristics of single cells. Typical laser-based instruments provide throughputs of >10,000 events/s; however, the number of measured features is typically small and apply to the entire cell volume. Imaging flow cytometers (IFC) rely instead on 2D images of the objects, providing hundreds to millions of spatially resolved features. However, the throughput of IFCs is typically lower (several thousand events/s) due to the computational overhead of 2D image processing. Here, we demonstrate a GPU-accelerated computer vision analyzer which substantially increases computational throughput. When coupled to a 300 frame per second (fps) real-time camera, the system is limited by the camera and analyzes 1260 particles/s in a 500x700 pixel video with 4-5 particles/frame. When reading from a solid state disk, the throughput increases to 4500 fps with ~3 particles per frame, resulting in a throughput of 13,500 particles/s. The reported throughput is 2.5-4X higher than existing technologies, paving the way for ultra-high throughput IFC.</abstract><pub>IEEE</pub><doi>10.1109/SENSORS43011.2019.8956759</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2168-9229 |
ispartof | 2019 IEEE SENSORS, 2019, p.1-4 |
issn | 2168-9229 |
language | eng |
recordid | cdi_ieee_primary_8956759 |
source | IEEE Xplore All Conference Series |
subjects | computer vision GPU imaging flow cytometry |
title | Imaging Flow Cytometry at >13K events/s Using GPU-Accelerated Computer Vision |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Imaging%20Flow%20Cytometry%20at%20%3E13K%20events/s%20Using%20GPU-Accelerated%20Computer%20Vision&rft.btitle=2019%20IEEE%20SENSORS&rft.au=Vedhanayagam,%20Arpith&rft.date=2019-10&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2168-9229&rft_id=info:doi/10.1109/SENSORS43011.2019.8956759&rft.eisbn=9781728116341&rft.eisbn_list=1728116341&rft_dat=%3Cieee_CHZPO%3E8956759%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-f24e561e78a5c690c1b1b0f67008be64276a03d84b424c28ab77832eae2dfb603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8956759&rfr_iscdi=true |