Loading…

6-W Optical Power Link With Integrated Optical Data Transmission

This article demonstrates a fiber-based power-by-light system that is capable of delivering up to 6.2 W of continuous electrical power at common voltages of 3.3 and 5 V. This optical link includes bidirectional optical communication, for which the data stream from the base to the remote unit is real...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2020-08, Vol.35 (8), p.7904-7909
Main Authors: Helmers, Henning, Armbruster, Cornelius, von Ravenstein, Moritz, Derix, David, Schoner, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-26ec0d0f579334a5998d075189330f8114a412cac792f5d4da435afed883f1723
cites cdi_FETCH-LOGICAL-c336t-26ec0d0f579334a5998d075189330f8114a412cac792f5d4da435afed883f1723
container_end_page 7909
container_issue 8
container_start_page 7904
container_title IEEE transactions on power electronics
container_volume 35
creator Helmers, Henning
Armbruster, Cornelius
von Ravenstein, Moritz
Derix, David
Schoner, Christian
description This article demonstrates a fiber-based power-by-light system that is capable of delivering up to 6.2 W of continuous electrical power at common voltages of 3.3 and 5 V. This optical link includes bidirectional optical communication, for which the data stream from the base to the remote unit is realized by amplitude modulation of the laser beam over the same fiber. At the remote unit, a gallium arsenide-based photovoltaic (PV) laser power converter receives and converts the light. The data are demodulated with a dedicated electric circuit, while the power is forwarded to a dc-dc boost converter. The optical data uplink is realized over a separate optical fiber. In operation, a PV conversion efficiency of above 50% has been measured. For downlink data rates up to 115.2 kb/s, unperturbed signal integrities are demonstrated, at higher data rates, the signal integrity deteriorates. An assessment of power budget and power losses in the overall system is presented. Finally, a smart power management concept is introduced, which controls the laser output power with respect to changing electrical load, optimizes the operating point of the PV cell, and, thus, increases system efficiency for varying load operation. Thereby, it also minimizes laser and PV cell operating temperatures, and eventually prolongs the lifetime of the system.
doi_str_mv 10.1109/TPEL.2020.2967475
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8962158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8962158</ieee_id><sourcerecordid>2393786278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-26ec0d0f579334a5998d075189330f8114a412cac792f5d4da435afed883f1723</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKs_QNwMuJ76Xj4myU6pVQsD7aLSZQgziU5tZ2qSIv33Tmnp6nHh3PvgEHKPMEIE_bSYT8oRBQojqgvJpbggA9Qcc0CQl2QASolcac2uyU2MKwDkAnBAnot8mc22qansOpt3fy5kZdP-ZMsmfWfTNrmvYJOrz8irTTZbBNvGTRNj07W35MrbdXR3pzskn2-TxfgjL2fv0_FLmVeMFSmnhaugBi-kZoxbobWqQQpUfQSvELnlSCtbSU29qHltORPWu1op5lFSNiSPx91t6H53Liaz6nah7V8ayjSTqqBS9RQeqSp0MQbnzTY0Gxv2BsEcRJmDKHMQZU6i-s7DsdM458680gVFodg_DwdiBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393786278</pqid></control><display><type>article</type><title>6-W Optical Power Link With Integrated Optical Data Transmission</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Helmers, Henning ; Armbruster, Cornelius ; von Ravenstein, Moritz ; Derix, David ; Schoner, Christian</creator><creatorcontrib>Helmers, Henning ; Armbruster, Cornelius ; von Ravenstein, Moritz ; Derix, David ; Schoner, Christian</creatorcontrib><description>This article demonstrates a fiber-based power-by-light system that is capable of delivering up to 6.2 W of continuous electrical power at common voltages of 3.3 and 5 V. This optical link includes bidirectional optical communication, for which the data stream from the base to the remote unit is realized by amplitude modulation of the laser beam over the same fiber. At the remote unit, a gallium arsenide-based photovoltaic (PV) laser power converter receives and converts the light. The data are demodulated with a dedicated electric circuit, while the power is forwarded to a dc-dc boost converter. The optical data uplink is realized over a separate optical fiber. In operation, a PV conversion efficiency of above 50% has been measured. For downlink data rates up to 115.2 kb/s, unperturbed signal integrities are demonstrated, at higher data rates, the signal integrity deteriorates. An assessment of power budget and power losses in the overall system is presented. Finally, a smart power management concept is introduced, which controls the laser output power with respect to changing electrical load, optimizes the operating point of the PV cell, and, thus, increases system efficiency for varying load operation. Thereby, it also minimizes laser and PV cell operating temperatures, and eventually prolongs the lifetime of the system.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2020.2967475</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplitude modulation ; Circuits ; Data transmission ; dc-dc power converters ; Electric power loss ; Electrical loads ; energy management ; Gallium arsenide ; Integrated optics ; laser applications ; Laser beams ; Lasers ; Operating temperature ; Optical communication ; Optical fiber communication ; Optical fibers ; Optical receivers ; Optical sensors ; Optical transmitters ; Photovoltaic cells ; Power converters ; Power lasers ; Power management ; power transmission ; Signal integrity</subject><ispartof>IEEE transactions on power electronics, 2020-08, Vol.35 (8), p.7904-7909</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-26ec0d0f579334a5998d075189330f8114a412cac792f5d4da435afed883f1723</citedby><cites>FETCH-LOGICAL-c336t-26ec0d0f579334a5998d075189330f8114a412cac792f5d4da435afed883f1723</cites><orcidid>0000-0003-1660-7651 ; 0000-0002-2289-5189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8962158$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Helmers, Henning</creatorcontrib><creatorcontrib>Armbruster, Cornelius</creatorcontrib><creatorcontrib>von Ravenstein, Moritz</creatorcontrib><creatorcontrib>Derix, David</creatorcontrib><creatorcontrib>Schoner, Christian</creatorcontrib><title>6-W Optical Power Link With Integrated Optical Data Transmission</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>This article demonstrates a fiber-based power-by-light system that is capable of delivering up to 6.2 W of continuous electrical power at common voltages of 3.3 and 5 V. This optical link includes bidirectional optical communication, for which the data stream from the base to the remote unit is realized by amplitude modulation of the laser beam over the same fiber. At the remote unit, a gallium arsenide-based photovoltaic (PV) laser power converter receives and converts the light. The data are demodulated with a dedicated electric circuit, while the power is forwarded to a dc-dc boost converter. The optical data uplink is realized over a separate optical fiber. In operation, a PV conversion efficiency of above 50% has been measured. For downlink data rates up to 115.2 kb/s, unperturbed signal integrities are demonstrated, at higher data rates, the signal integrity deteriorates. An assessment of power budget and power losses in the overall system is presented. Finally, a smart power management concept is introduced, which controls the laser output power with respect to changing electrical load, optimizes the operating point of the PV cell, and, thus, increases system efficiency for varying load operation. Thereby, it also minimizes laser and PV cell operating temperatures, and eventually prolongs the lifetime of the system.</description><subject>Amplitude modulation</subject><subject>Circuits</subject><subject>Data transmission</subject><subject>dc-dc power converters</subject><subject>Electric power loss</subject><subject>Electrical loads</subject><subject>energy management</subject><subject>Gallium arsenide</subject><subject>Integrated optics</subject><subject>laser applications</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Operating temperature</subject><subject>Optical communication</subject><subject>Optical fiber communication</subject><subject>Optical fibers</subject><subject>Optical receivers</subject><subject>Optical sensors</subject><subject>Optical transmitters</subject><subject>Photovoltaic cells</subject><subject>Power converters</subject><subject>Power lasers</subject><subject>Power management</subject><subject>power transmission</subject><subject>Signal integrity</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kE1LAzEURYMoWKs_QNwMuJ76Xj4myU6pVQsD7aLSZQgziU5tZ2qSIv33Tmnp6nHh3PvgEHKPMEIE_bSYT8oRBQojqgvJpbggA9Qcc0CQl2QASolcac2uyU2MKwDkAnBAnot8mc22qansOpt3fy5kZdP-ZMsmfWfTNrmvYJOrz8irTTZbBNvGTRNj07W35MrbdXR3pzskn2-TxfgjL2fv0_FLmVeMFSmnhaugBi-kZoxbobWqQQpUfQSvELnlSCtbSU29qHltORPWu1op5lFSNiSPx91t6H53Liaz6nah7V8ayjSTqqBS9RQeqSp0MQbnzTY0Gxv2BsEcRJmDKHMQZU6i-s7DsdM458680gVFodg_DwdiBA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Helmers, Henning</creator><creator>Armbruster, Cornelius</creator><creator>von Ravenstein, Moritz</creator><creator>Derix, David</creator><creator>Schoner, Christian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1660-7651</orcidid><orcidid>https://orcid.org/0000-0002-2289-5189</orcidid></search><sort><creationdate>20200801</creationdate><title>6-W Optical Power Link With Integrated Optical Data Transmission</title><author>Helmers, Henning ; Armbruster, Cornelius ; von Ravenstein, Moritz ; Derix, David ; Schoner, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-26ec0d0f579334a5998d075189330f8114a412cac792f5d4da435afed883f1723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitude modulation</topic><topic>Circuits</topic><topic>Data transmission</topic><topic>dc-dc power converters</topic><topic>Electric power loss</topic><topic>Electrical loads</topic><topic>energy management</topic><topic>Gallium arsenide</topic><topic>Integrated optics</topic><topic>laser applications</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Operating temperature</topic><topic>Optical communication</topic><topic>Optical fiber communication</topic><topic>Optical fibers</topic><topic>Optical receivers</topic><topic>Optical sensors</topic><topic>Optical transmitters</topic><topic>Photovoltaic cells</topic><topic>Power converters</topic><topic>Power lasers</topic><topic>Power management</topic><topic>power transmission</topic><topic>Signal integrity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helmers, Henning</creatorcontrib><creatorcontrib>Armbruster, Cornelius</creatorcontrib><creatorcontrib>von Ravenstein, Moritz</creatorcontrib><creatorcontrib>Derix, David</creatorcontrib><creatorcontrib>Schoner, Christian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helmers, Henning</au><au>Armbruster, Cornelius</au><au>von Ravenstein, Moritz</au><au>Derix, David</au><au>Schoner, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>6-W Optical Power Link With Integrated Optical Data Transmission</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>35</volume><issue>8</issue><spage>7904</spage><epage>7909</epage><pages>7904-7909</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>This article demonstrates a fiber-based power-by-light system that is capable of delivering up to 6.2 W of continuous electrical power at common voltages of 3.3 and 5 V. This optical link includes bidirectional optical communication, for which the data stream from the base to the remote unit is realized by amplitude modulation of the laser beam over the same fiber. At the remote unit, a gallium arsenide-based photovoltaic (PV) laser power converter receives and converts the light. The data are demodulated with a dedicated electric circuit, while the power is forwarded to a dc-dc boost converter. The optical data uplink is realized over a separate optical fiber. In operation, a PV conversion efficiency of above 50% has been measured. For downlink data rates up to 115.2 kb/s, unperturbed signal integrities are demonstrated, at higher data rates, the signal integrity deteriorates. An assessment of power budget and power losses in the overall system is presented. Finally, a smart power management concept is introduced, which controls the laser output power with respect to changing electrical load, optimizes the operating point of the PV cell, and, thus, increases system efficiency for varying load operation. Thereby, it also minimizes laser and PV cell operating temperatures, and eventually prolongs the lifetime of the system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2020.2967475</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1660-7651</orcidid><orcidid>https://orcid.org/0000-0002-2289-5189</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2020-08, Vol.35 (8), p.7904-7909
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_8962158
source IEEE Electronic Library (IEL) Journals
subjects Amplitude modulation
Circuits
Data transmission
dc-dc power converters
Electric power loss
Electrical loads
energy management
Gallium arsenide
Integrated optics
laser applications
Laser beams
Lasers
Operating temperature
Optical communication
Optical fiber communication
Optical fibers
Optical receivers
Optical sensors
Optical transmitters
Photovoltaic cells
Power converters
Power lasers
Power management
power transmission
Signal integrity
title 6-W Optical Power Link With Integrated Optical Data Transmission
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A41%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=6-W%20Optical%20Power%20Link%20With%20Integrated%20Optical%20Data%20Transmission&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Helmers,%20Henning&rft.date=2020-08-01&rft.volume=35&rft.issue=8&rft.spage=7904&rft.epage=7909&rft.pages=7904-7909&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2020.2967475&rft_dat=%3Cproquest_ieee_%3E2393786278%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-26ec0d0f579334a5998d075189330f8114a412cac792f5d4da435afed883f1723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2393786278&rft_id=info:pmid/&rft_ieee_id=8962158&rfr_iscdi=true