Loading…
6-W Optical Power Link With Integrated Optical Data Transmission
This article demonstrates a fiber-based power-by-light system that is capable of delivering up to 6.2 W of continuous electrical power at common voltages of 3.3 and 5 V. This optical link includes bidirectional optical communication, for which the data stream from the base to the remote unit is real...
Saved in:
Published in: | IEEE transactions on power electronics 2020-08, Vol.35 (8), p.7904-7909 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-26ec0d0f579334a5998d075189330f8114a412cac792f5d4da435afed883f1723 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-26ec0d0f579334a5998d075189330f8114a412cac792f5d4da435afed883f1723 |
container_end_page | 7909 |
container_issue | 8 |
container_start_page | 7904 |
container_title | IEEE transactions on power electronics |
container_volume | 35 |
creator | Helmers, Henning Armbruster, Cornelius von Ravenstein, Moritz Derix, David Schoner, Christian |
description | This article demonstrates a fiber-based power-by-light system that is capable of delivering up to 6.2 W of continuous electrical power at common voltages of 3.3 and 5 V. This optical link includes bidirectional optical communication, for which the data stream from the base to the remote unit is realized by amplitude modulation of the laser beam over the same fiber. At the remote unit, a gallium arsenide-based photovoltaic (PV) laser power converter receives and converts the light. The data are demodulated with a dedicated electric circuit, while the power is forwarded to a dc-dc boost converter. The optical data uplink is realized over a separate optical fiber. In operation, a PV conversion efficiency of above 50% has been measured. For downlink data rates up to 115.2 kb/s, unperturbed signal integrities are demonstrated, at higher data rates, the signal integrity deteriorates. An assessment of power budget and power losses in the overall system is presented. Finally, a smart power management concept is introduced, which controls the laser output power with respect to changing electrical load, optimizes the operating point of the PV cell, and, thus, increases system efficiency for varying load operation. Thereby, it also minimizes laser and PV cell operating temperatures, and eventually prolongs the lifetime of the system. |
doi_str_mv | 10.1109/TPEL.2020.2967475 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8962158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8962158</ieee_id><sourcerecordid>2393786278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-26ec0d0f579334a5998d075189330f8114a412cac792f5d4da435afed883f1723</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKs_QNwMuJ76Xj4myU6pVQsD7aLSZQgziU5tZ2qSIv33Tmnp6nHh3PvgEHKPMEIE_bSYT8oRBQojqgvJpbggA9Qcc0CQl2QASolcac2uyU2MKwDkAnBAnot8mc22qansOpt3fy5kZdP-ZMsmfWfTNrmvYJOrz8irTTZbBNvGTRNj07W35MrbdXR3pzskn2-TxfgjL2fv0_FLmVeMFSmnhaugBi-kZoxbobWqQQpUfQSvELnlSCtbSU29qHltORPWu1op5lFSNiSPx91t6H53Liaz6nah7V8ayjSTqqBS9RQeqSp0MQbnzTY0Gxv2BsEcRJmDKHMQZU6i-s7DsdM458680gVFodg_DwdiBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393786278</pqid></control><display><type>article</type><title>6-W Optical Power Link With Integrated Optical Data Transmission</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Helmers, Henning ; Armbruster, Cornelius ; von Ravenstein, Moritz ; Derix, David ; Schoner, Christian</creator><creatorcontrib>Helmers, Henning ; Armbruster, Cornelius ; von Ravenstein, Moritz ; Derix, David ; Schoner, Christian</creatorcontrib><description>This article demonstrates a fiber-based power-by-light system that is capable of delivering up to 6.2 W of continuous electrical power at common voltages of 3.3 and 5 V. This optical link includes bidirectional optical communication, for which the data stream from the base to the remote unit is realized by amplitude modulation of the laser beam over the same fiber. At the remote unit, a gallium arsenide-based photovoltaic (PV) laser power converter receives and converts the light. The data are demodulated with a dedicated electric circuit, while the power is forwarded to a dc-dc boost converter. The optical data uplink is realized over a separate optical fiber. In operation, a PV conversion efficiency of above 50% has been measured. For downlink data rates up to 115.2 kb/s, unperturbed signal integrities are demonstrated, at higher data rates, the signal integrity deteriorates. An assessment of power budget and power losses in the overall system is presented. Finally, a smart power management concept is introduced, which controls the laser output power with respect to changing electrical load, optimizes the operating point of the PV cell, and, thus, increases system efficiency for varying load operation. Thereby, it also minimizes laser and PV cell operating temperatures, and eventually prolongs the lifetime of the system.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2020.2967475</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplitude modulation ; Circuits ; Data transmission ; dc-dc power converters ; Electric power loss ; Electrical loads ; energy management ; Gallium arsenide ; Integrated optics ; laser applications ; Laser beams ; Lasers ; Operating temperature ; Optical communication ; Optical fiber communication ; Optical fibers ; Optical receivers ; Optical sensors ; Optical transmitters ; Photovoltaic cells ; Power converters ; Power lasers ; Power management ; power transmission ; Signal integrity</subject><ispartof>IEEE transactions on power electronics, 2020-08, Vol.35 (8), p.7904-7909</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-26ec0d0f579334a5998d075189330f8114a412cac792f5d4da435afed883f1723</citedby><cites>FETCH-LOGICAL-c336t-26ec0d0f579334a5998d075189330f8114a412cac792f5d4da435afed883f1723</cites><orcidid>0000-0003-1660-7651 ; 0000-0002-2289-5189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8962158$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Helmers, Henning</creatorcontrib><creatorcontrib>Armbruster, Cornelius</creatorcontrib><creatorcontrib>von Ravenstein, Moritz</creatorcontrib><creatorcontrib>Derix, David</creatorcontrib><creatorcontrib>Schoner, Christian</creatorcontrib><title>6-W Optical Power Link With Integrated Optical Data Transmission</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>This article demonstrates a fiber-based power-by-light system that is capable of delivering up to 6.2 W of continuous electrical power at common voltages of 3.3 and 5 V. This optical link includes bidirectional optical communication, for which the data stream from the base to the remote unit is realized by amplitude modulation of the laser beam over the same fiber. At the remote unit, a gallium arsenide-based photovoltaic (PV) laser power converter receives and converts the light. The data are demodulated with a dedicated electric circuit, while the power is forwarded to a dc-dc boost converter. The optical data uplink is realized over a separate optical fiber. In operation, a PV conversion efficiency of above 50% has been measured. For downlink data rates up to 115.2 kb/s, unperturbed signal integrities are demonstrated, at higher data rates, the signal integrity deteriorates. An assessment of power budget and power losses in the overall system is presented. Finally, a smart power management concept is introduced, which controls the laser output power with respect to changing electrical load, optimizes the operating point of the PV cell, and, thus, increases system efficiency for varying load operation. Thereby, it also minimizes laser and PV cell operating temperatures, and eventually prolongs the lifetime of the system.</description><subject>Amplitude modulation</subject><subject>Circuits</subject><subject>Data transmission</subject><subject>dc-dc power converters</subject><subject>Electric power loss</subject><subject>Electrical loads</subject><subject>energy management</subject><subject>Gallium arsenide</subject><subject>Integrated optics</subject><subject>laser applications</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Operating temperature</subject><subject>Optical communication</subject><subject>Optical fiber communication</subject><subject>Optical fibers</subject><subject>Optical receivers</subject><subject>Optical sensors</subject><subject>Optical transmitters</subject><subject>Photovoltaic cells</subject><subject>Power converters</subject><subject>Power lasers</subject><subject>Power management</subject><subject>power transmission</subject><subject>Signal integrity</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kE1LAzEURYMoWKs_QNwMuJ76Xj4myU6pVQsD7aLSZQgziU5tZ2qSIv33Tmnp6nHh3PvgEHKPMEIE_bSYT8oRBQojqgvJpbggA9Qcc0CQl2QASolcac2uyU2MKwDkAnBAnot8mc22qansOpt3fy5kZdP-ZMsmfWfTNrmvYJOrz8irTTZbBNvGTRNj07W35MrbdXR3pzskn2-TxfgjL2fv0_FLmVeMFSmnhaugBi-kZoxbobWqQQpUfQSvELnlSCtbSU29qHltORPWu1op5lFSNiSPx91t6H53Liaz6nah7V8ayjSTqqBS9RQeqSp0MQbnzTY0Gxv2BsEcRJmDKHMQZU6i-s7DsdM458680gVFodg_DwdiBA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Helmers, Henning</creator><creator>Armbruster, Cornelius</creator><creator>von Ravenstein, Moritz</creator><creator>Derix, David</creator><creator>Schoner, Christian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1660-7651</orcidid><orcidid>https://orcid.org/0000-0002-2289-5189</orcidid></search><sort><creationdate>20200801</creationdate><title>6-W Optical Power Link With Integrated Optical Data Transmission</title><author>Helmers, Henning ; Armbruster, Cornelius ; von Ravenstein, Moritz ; Derix, David ; Schoner, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-26ec0d0f579334a5998d075189330f8114a412cac792f5d4da435afed883f1723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitude modulation</topic><topic>Circuits</topic><topic>Data transmission</topic><topic>dc-dc power converters</topic><topic>Electric power loss</topic><topic>Electrical loads</topic><topic>energy management</topic><topic>Gallium arsenide</topic><topic>Integrated optics</topic><topic>laser applications</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Operating temperature</topic><topic>Optical communication</topic><topic>Optical fiber communication</topic><topic>Optical fibers</topic><topic>Optical receivers</topic><topic>Optical sensors</topic><topic>Optical transmitters</topic><topic>Photovoltaic cells</topic><topic>Power converters</topic><topic>Power lasers</topic><topic>Power management</topic><topic>power transmission</topic><topic>Signal integrity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helmers, Henning</creatorcontrib><creatorcontrib>Armbruster, Cornelius</creatorcontrib><creatorcontrib>von Ravenstein, Moritz</creatorcontrib><creatorcontrib>Derix, David</creatorcontrib><creatorcontrib>Schoner, Christian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helmers, Henning</au><au>Armbruster, Cornelius</au><au>von Ravenstein, Moritz</au><au>Derix, David</au><au>Schoner, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>6-W Optical Power Link With Integrated Optical Data Transmission</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>35</volume><issue>8</issue><spage>7904</spage><epage>7909</epage><pages>7904-7909</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>This article demonstrates a fiber-based power-by-light system that is capable of delivering up to 6.2 W of continuous electrical power at common voltages of 3.3 and 5 V. This optical link includes bidirectional optical communication, for which the data stream from the base to the remote unit is realized by amplitude modulation of the laser beam over the same fiber. At the remote unit, a gallium arsenide-based photovoltaic (PV) laser power converter receives and converts the light. The data are demodulated with a dedicated electric circuit, while the power is forwarded to a dc-dc boost converter. The optical data uplink is realized over a separate optical fiber. In operation, a PV conversion efficiency of above 50% has been measured. For downlink data rates up to 115.2 kb/s, unperturbed signal integrities are demonstrated, at higher data rates, the signal integrity deteriorates. An assessment of power budget and power losses in the overall system is presented. Finally, a smart power management concept is introduced, which controls the laser output power with respect to changing electrical load, optimizes the operating point of the PV cell, and, thus, increases system efficiency for varying load operation. Thereby, it also minimizes laser and PV cell operating temperatures, and eventually prolongs the lifetime of the system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2020.2967475</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1660-7651</orcidid><orcidid>https://orcid.org/0000-0002-2289-5189</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2020-08, Vol.35 (8), p.7904-7909 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_8962158 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Amplitude modulation Circuits Data transmission dc-dc power converters Electric power loss Electrical loads energy management Gallium arsenide Integrated optics laser applications Laser beams Lasers Operating temperature Optical communication Optical fiber communication Optical fibers Optical receivers Optical sensors Optical transmitters Photovoltaic cells Power converters Power lasers Power management power transmission Signal integrity |
title | 6-W Optical Power Link With Integrated Optical Data Transmission |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A41%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=6-W%20Optical%20Power%20Link%20With%20Integrated%20Optical%20Data%20Transmission&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Helmers,%20Henning&rft.date=2020-08-01&rft.volume=35&rft.issue=8&rft.spage=7904&rft.epage=7909&rft.pages=7904-7909&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2020.2967475&rft_dat=%3Cproquest_ieee_%3E2393786278%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-26ec0d0f579334a5998d075189330f8114a412cac792f5d4da435afed883f1723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2393786278&rft_id=info:pmid/&rft_ieee_id=8962158&rfr_iscdi=true |