Loading…

Long-term Prediction of Motion Trajectories Using Path Homology Clusters

In order for robots to share their workspace with people, they need to reason about human motion efficiently. In this work we leverage large datasets of paths in order to infer local models that are able to perform long-term predictions of human motion. Further, since our method is based on simple d...

Full description

Saved in:
Bibliographic Details
Main Authors: Frederico Carvalho, J., Vejdemo-Johansson, Mikael, Pokorny, Florian T., Kragic, Danica
Format: Conference Proceeding
Language:English
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 772
container_issue
container_start_page 765
container_title
container_volume
creator Frederico Carvalho, J.
Vejdemo-Johansson, Mikael
Pokorny, Florian T.
Kragic, Danica
description In order for robots to share their workspace with people, they need to reason about human motion efficiently. In this work we leverage large datasets of paths in order to infer local models that are able to perform long-term predictions of human motion. Further, since our method is based on simple dynamics, it is conceptually simple to understand and allows one to interpret the predictions produced, as well as to extract a cost function that can be used for planning. The main difference between our method and similar systems, is that we employ a map of the space and translate the motion of groups of paths into vector fields on that map. We test our method on synthetic data and show its performance on the Edinburgh forum pedestrian long-term tracking dataset [1] where we were able to outperform a Gaussian Mixture Model tasked with extracting dynamics from the paths.
doi_str_mv 10.1109/IROS40897.2019.8968125
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8968125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8968125</ieee_id><sourcerecordid>8968125</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-cb116aa6aac40b9eff15336432bca6c7aa99b9fb2717e710ce0938bc930663523</originalsourceid><addsrcrecordid>eNotT19LwzAcjILgnPsEguQLtP5-SZs_j1LUDiobuj2PNKY1o22kqQ_79pY5OLh7uDvuCHlESBFBP60_Np8ZKC1TBqhTpYVCll-RO5RMYQaQqWuyYJjzBJQQt2QV4xEAEKSezQtSVmFok8mNPd2O7svbyYeBhoa-h7Pajebo7BRG7yLdRz-0dGumb1qGPnShPdGi-41zPN6Tm8Z00a0uvCT715ddUSbV5m1dPFeJZxlOia0RhTEzbAa1dk0zb-Mi46y2RlhpjNa1bmomUTqJYB1ormqrOQjBc8aX5OG_1zvnDj-j7814OlyO8z_3pE25</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Long-term Prediction of Motion Trajectories Using Path Homology Clusters</title><source>IEEE Xplore All Conference Series</source><creator>Frederico Carvalho, J. ; Vejdemo-Johansson, Mikael ; Pokorny, Florian T. ; Kragic, Danica</creator><creatorcontrib>Frederico Carvalho, J. ; Vejdemo-Johansson, Mikael ; Pokorny, Florian T. ; Kragic, Danica</creatorcontrib><description>In order for robots to share their workspace with people, they need to reason about human motion efficiently. In this work we leverage large datasets of paths in order to infer local models that are able to perform long-term predictions of human motion. Further, since our method is based on simple dynamics, it is conceptually simple to understand and allows one to interpret the predictions produced, as well as to extract a cost function that can be used for planning. The main difference between our method and similar systems, is that we employ a map of the space and translate the motion of groups of paths into vector fields on that map. We test our method on synthetic data and show its performance on the Edinburgh forum pedestrian long-term tracking dataset [1] where we were able to outperform a Gaussian Mixture Model tasked with extracting dynamics from the paths.</description><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 1728140048</identifier><identifier>EISBN: 9781728140049</identifier><identifier>DOI: 10.1109/IROS40897.2019.8968125</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, p.765-772</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8968125$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8968125$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Frederico Carvalho, J.</creatorcontrib><creatorcontrib>Vejdemo-Johansson, Mikael</creatorcontrib><creatorcontrib>Pokorny, Florian T.</creatorcontrib><creatorcontrib>Kragic, Danica</creatorcontrib><title>Long-term Prediction of Motion Trajectories Using Path Homology Clusters</title><title>2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</title><addtitle>IROS</addtitle><description>In order for robots to share their workspace with people, they need to reason about human motion efficiently. In this work we leverage large datasets of paths in order to infer local models that are able to perform long-term predictions of human motion. Further, since our method is based on simple dynamics, it is conceptually simple to understand and allows one to interpret the predictions produced, as well as to extract a cost function that can be used for planning. The main difference between our method and similar systems, is that we employ a map of the space and translate the motion of groups of paths into vector fields on that map. We test our method on synthetic data and show its performance on the Edinburgh forum pedestrian long-term tracking dataset [1] where we were able to outperform a Gaussian Mixture Model tasked with extracting dynamics from the paths.</description><issn>2153-0866</issn><isbn>1728140048</isbn><isbn>9781728140049</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT19LwzAcjILgnPsEguQLtP5-SZs_j1LUDiobuj2PNKY1o22kqQ_79pY5OLh7uDvuCHlESBFBP60_Np8ZKC1TBqhTpYVCll-RO5RMYQaQqWuyYJjzBJQQt2QV4xEAEKSezQtSVmFok8mNPd2O7svbyYeBhoa-h7Pajebo7BRG7yLdRz-0dGumb1qGPnShPdGi-41zPN6Tm8Z00a0uvCT715ddUSbV5m1dPFeJZxlOia0RhTEzbAa1dk0zb-Mi46y2RlhpjNa1bmomUTqJYB1ormqrOQjBc8aX5OG_1zvnDj-j7814OlyO8z_3pE25</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Frederico Carvalho, J.</creator><creator>Vejdemo-Johansson, Mikael</creator><creator>Pokorny, Florian T.</creator><creator>Kragic, Danica</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201911</creationdate><title>Long-term Prediction of Motion Trajectories Using Path Homology Clusters</title><author>Frederico Carvalho, J. ; Vejdemo-Johansson, Mikael ; Pokorny, Florian T. ; Kragic, Danica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-cb116aa6aac40b9eff15336432bca6c7aa99b9fb2717e710ce0938bc930663523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Frederico Carvalho, J.</creatorcontrib><creatorcontrib>Vejdemo-Johansson, Mikael</creatorcontrib><creatorcontrib>Pokorny, Florian T.</creatorcontrib><creatorcontrib>Kragic, Danica</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Frederico Carvalho, J.</au><au>Vejdemo-Johansson, Mikael</au><au>Pokorny, Florian T.</au><au>Kragic, Danica</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Long-term Prediction of Motion Trajectories Using Path Homology Clusters</atitle><btitle>2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</btitle><stitle>IROS</stitle><date>2019-11</date><risdate>2019</risdate><spage>765</spage><epage>772</epage><pages>765-772</pages><eissn>2153-0866</eissn><eisbn>1728140048</eisbn><eisbn>9781728140049</eisbn><abstract>In order for robots to share their workspace with people, they need to reason about human motion efficiently. In this work we leverage large datasets of paths in order to infer local models that are able to perform long-term predictions of human motion. Further, since our method is based on simple dynamics, it is conceptually simple to understand and allows one to interpret the predictions produced, as well as to extract a cost function that can be used for planning. The main difference between our method and similar systems, is that we employ a map of the space and translate the motion of groups of paths into vector fields on that map. We test our method on synthetic data and show its performance on the Edinburgh forum pedestrian long-term tracking dataset [1] where we were able to outperform a Gaussian Mixture Model tasked with extracting dynamics from the paths.</abstract><pub>IEEE</pub><doi>10.1109/IROS40897.2019.8968125</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-0866
ispartof 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, p.765-772
issn 2153-0866
language eng
recordid cdi_ieee_primary_8968125
source IEEE Xplore All Conference Series
title Long-term Prediction of Motion Trajectories Using Path Homology Clusters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Long-term%20Prediction%20of%20Motion%20Trajectories%20Using%20Path%20Homology%20Clusters&rft.btitle=2019%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems%20(IROS)&rft.au=Frederico%20Carvalho,%20J.&rft.date=2019-11&rft.spage=765&rft.epage=772&rft.pages=765-772&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS40897.2019.8968125&rft.eisbn=1728140048&rft.eisbn_list=9781728140049&rft_dat=%3Cieee_CHZPO%3E8968125%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i241t-cb116aa6aac40b9eff15336432bca6c7aa99b9fb2717e710ce0938bc930663523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8968125&rfr_iscdi=true